A novel artificial intelligence based multistage controller for load frequency control in power systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000025 National Centre for Energy II
Ministry of Education, Youth and Sports
TN02000025 National Centre for Energy II
Ministry of Education, Youth and Sports
CZ.10.03.01/00/22_003/0000048
Ministry of the Environment of the Czech Republic
CZ.10.03.01/00/22_003/0000048
Ministry of the Environment of the Czech Republic
PubMed
39609641
PubMed Central
PMC11604663
DOI
10.1038/s41598-024-81382-2
PII: 10.1038/s41598-024-81382-2
Knihovny.cz E-zdroje
- Klíčová slova
- Advanced optimization methods, Artificial intelligence, Bio-dynamic grasshopper optimization algorithm, Hybrid power systems, Intelligent control, Load frequency control, Multi-stage controller,
- Publikační typ
- časopisecké články MeSH
The imbalance between generated power and load demand often causes unwanted fluctuations in the frequency and tie-line power changes within a power system. To address this issue, a control process known as load frequency control (LFC) is essential. This study aims to optimize the parameters of the LFC controller for a two-area power system that includes a reheat thermal generator and a photovoltaic (PV) power plant. An innovative multi-stage TDn(1 + PI) controller is introduced to reduce the oscillations in frequency and tie-line power changes. This controller combines a tilt-derivative with an N filter (TDn) with a proportional-integral (PI) controller, which improves the system's response by correcting both steady-state errors and the rate of change. This design enhances the stability and speed of dynamic control systems. A new meta-heuristic optimization technique called bio-dynamic grasshopper optimization algorithm (BDGOA) is used for the first time to fine-tune the parameters of the proposed controller and improve its performance. The effectiveness of the controller is evaluated under various load demands, parameter variations, and nonlinearities. Comparisons with other controllers and optimization algorithms show that the BDGOA-TDn(1 + PI) controller significantly reduces overshoot in system frequency and tie-line power changes and achieves faster settling times for these oscillations. Simulation results demonstrate that the BDGOA-TDn(1 + PI) controller significantly outperforms conventional controllers, achieving a reduction in overshoot by 75%, faster settling times by 60%, and a lower integral of time-weighted absolute error by 50% under diverse operating conditions, including parameter variations and nonlinearities such as time delays and governor deadband effects.
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
College of Engineering University of Business and Technology Jeddah 21448 Saudi Arabia
Department of Computer Engineering Batman University Batman Turkey
Department of Electrical Engineering Graphic Era Dehradun 248002 India
ENET Centre VSB Technical University of Ostrava Ostrava 708 00 Czech Republic
Faculty of Electrical Engineering Sahand University of Technology Tabriz Iran
Zobrazit více v PubMed
Ranjan, M. & Shankar, R. A literature survey on load frequency control considering renewable energy integration in power system: recent trends and future prospects. J. Energy Storage. 45, 103717 (2022).
Gulzar, M. M. et al. Load frequency control (LFC) strategies in renewable energy-based Hybrid Power systems: a review. Energies (Basel). 15, 3488 (2022).
Arya, Y. Automatic generation control of two-area electrical power systems via optimal fuzzy classical controller. J. Frankl. Inst.355, 2662–2688 (2018).
Sattar, F. et al. A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration. Appl. Energy. 353, 122226 (2024).
Sun, B. et al. An Energy Storage Capacity Configuration Method for a Provincial Power System considering Flexible Adjustment of the Tie-Line. Energies (Basel). 17, 270 (2024).
Dunna, V. K. et al. Super-twisting MPPT control for grid-connected PV/battery system using higher order sliding mode observer. Sci. Rep.14 (1), 16597 (2024). PubMed PMC
Izci, D., Abualigah, L., Can, Ö., Andiç, C. & Ekinci, S. Achieving improved stability for automatic voltage regulation with fractional-order PID plus double-derivative controller and mountain gazelle optimizer. Int. J. Dynamics Control. 1, 1–6 (2024 Feb).
Aribowo, W., Abualigah, L., Oliva, D. & Prapanca, A. A novel modified mountain gazelle optimizer for tuning parameter proportional integral derivative of DC motor. Bull. Electr. Eng. Inf.13 (2), 745–752 (2024).
Widi Aribowo, R. et al. Controlling parameters proportional integral derivative of DC motor using a gradient-based optimizer. Int. J. Power Electron. Drive Syst. (IJPEDS)Vol. 15 (2), 696– (June 2024).
Premkumar, M. et al. Optimal operation and control of hybrid power systems with stochastic renewables and FACTS devices: an intelligent multi-objective optimization approach. Alexandria Eng. J.93, 90–113 (2024).
Pandya, S. B. et al. Multi-objective RIME algorithm-based techno economic analysis for security constraints load dispatch and power flow including uncertainties model of hybrid power systems. Energy Rep.11, 4423–4451 (2024).
Alsmadi, O., Abu-Hammour, Z. & Mahafzah, K. Digital systems model order reduction with substructure preservation and fuzzy logic control. Eurasia Proc. Sci. Technol. Eng. Math.28, 14–22 (2024).
Abualigah, L., Ekinci, S. & Izci, D. Aircraft Pitch Control via filtered proportional-integral-derivative Controller Design using Sinh Cosh Optimizer. Int. J. Rob. Control Syst.4 (2), 746–757 (2024).
Alrashed, M. M., Flah, A., Dashtdar, M., El-Bayeh, C. Z. & Elnaggar, M. F. Improving the control strategy of the DVR Compensator based on an adaptive notch filter with an optimized PD Controller using the IGWO Algorithm. Int. Trans. Electr. Energy Syst.2024 (1), 5097056 (2024).
Fadheel, B. A. et al. A Hybrid Sparrow Search Optimized Fractional Virtual Inertia Control for Frequency Regulation of Multi-Microgrid System. IEEE Access. Mar 18. (2024).
Abualigah, L., Izci, D., Ekinci, S. & Zitar, R. A. Optimizing aircraft Pitch Control systems: a Novel Approach integrating Artificial rabbits optimizer with PID-F Controller. Int. J. Rob. Control Syst.4 (1), 354–364 (2024).
Izci, D. et al. Refined Sinh cosh optimizer tuned controller design for enhanced stability of automatic voltage regulation. Electr. Eng.29, 1–4 (2024 Mar).
Izci, D. et al. A novel control scheme for automatic voltage regulator using novel modified artificial rabbits optimizer. E-Prime-Advances Electr. Eng. Electron. Energy. 6, 100325 (2023).
Altawil, I. et al. Optimization of fractional order PI controller to regulate grid voltage connected photovoltaic system based on slap swarm algorithm. Int. J. Power Electron. Drive Syst. (IJPEDS). 14, 1184–1200 (2023).
Abualigah, L., Ekinci, S., Izci, D. & Zitar, R. A. Modified Elite Opposition-based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System. Intell. Autom. Soft Comput. ;38(2). (2023).
Sarayrah, A., Haj-ahmed, M. A. & Feilat, E. A. A Study of a Damping Control Based Predictive Strategy on an Inter-Area Power System. In IEEE PES GTD International Conference and Exposition (GTD) 2023 May 22 (pp. 60–66). IEEE. (2023).
Arya, Y. AGC of two-area electric power systems using optimized fuzzy PID with filter plus double integral controller. J. Frankl. Inst.355, 4583–4617 (2018).
Ni, L., Li, Y., Zhang, L. & Wang, G. A modified aquila optimizer with wide plant adaptability for the tuning of optimal fractional proportional–integral–derivative controller. Soft Comput.28, 6269–6305 (2024).
Sagor, A. R. et al. Pelican optimization algorithm-based proportional–integral–derivative Controller for Superior frequency regulation in interconnected Multi-area Power Generating System. Energies (Basel). 17, 3308 (2024).
Gulzar, M. M., Sibtain, D. & Khalid, M. Innovative design for enhancing transient stability with an ATFOPID controller in hybrid power systems. J. Energy Storage. 99, 113364 (2024).
Qu, Z. et al. Optimized PID Controller for load frequency control in multi-source and Dual-Area Power Systems Using PSO and GA algorithms. IEEE Access. 1–1. 10.1109/ACCESS.2024.3445165 (2024).
Mishra, A. K., Sharma, P., Siguerdidjane, H., Mishra, P. & Mathur, H. D. Maiden Application of Integral-Tilt Integral Derivative with Filter (I-TDN) Control structure for load frequency control. IFAC-PapersOnLine55, 72–77 (2022).
Arya, Y. AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1 + PI) controller. Renew. Energy. 134, 796–806 (2019).
Shayeghi, H. & Rahnama, A. Designing a PD-(1 + PI) controller for LFC of an entirely renewable microgrid using PSO-TVAC. Int. J. Techni Physi Prob Eng. (IJTPE). 12, 19–27 (2020).
Parvin, K. et al. Intelligent Controllers and Optimization Algorithms for Building Energy Management towards Achieving Sustainable Development: challenges and prospects. IEEE Access.9, 41577–41602 (2021).
Jabari, M. & Rad, A. Optimization of Speed Control and Reduction of Torque Ripple in switched Reluctance motors using Metaheuristic algorithms based PID and FOPID controllers at the Edge. Tsinghua Sci. Technol.10.26599/TST.2024.9010021 (2024).
Deng, W., Xu, J. & Zhao, H. An Improved ant colony optimization Algorithm based on hybrid strategies for Scheduling Problem. IEEE Access.7, 20281–20292 (2019).
Milani, A. E. & Mozafari, B. Genetic algorithm based optimal load frequency control in two-area interconected power systems. Glob J. Technol. Optim.2, 6–10 (2011).
Abd-Elazim, S. M. & Ali, E. S. Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm. Neural Comput. Appl.30, 607–616 (2018).
Sharma, M., Prakash, S., Saxena, S. & Dhundhara, S. Optimal fractional-Order Tilted-Integral-Derivative Controller for frequency stabilization in Hybrid Power System using salp swarm algorithm. Electr. Power Compon. Syst.48, 1912–1931 (2020).
Mohanty, D. & Panda, S. Modified salp swarm algorithm-optimized fractional-order adaptive fuzzy PID Controller for frequency regulation of Hybrid Power System with Electric Vehicle. J. Control Autom. Electr. Syst.32, 416–438 (2021).
Mishra, D., Nayak, P. C., Bhoi, S. K. & Prusty, R. C. Design and analysis of Multi-stage TDF/(1 + TI) controller for Load-frequency control of A.C Multi-Islanded Microgrid system using Modified Sine cosine algorithm. in 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON) 1–6 (IEEE, 2021). doi: (2021). 10.1109/ODICON50556.2021.9428969
Shayeghi, H. & Rahnama, A. Frequency regulation of a standalone interconnected AC Microgrid using innovative multistage TDF(1 + FOPI) Controller. J. Operation Autom. Power Eng.12, 121–133 (2024).
Shayeghi, H., Rahnama, A. & Bizon, N. TFODn-FOPI multi‐stage controller design to maintain an islanded microgrid load‐frequency balance considering responsive loads support. IET Generation Transmission Distribution. 17, 3266–3285 (2023).
Ekinci, S. et al. Automatic Generation Control of a hybrid PV-Reheat Thermal Power System using RIME algorithm. IEEE Access.12, 26919–26930 (2024).
Can, O. & Ayas, M. S. Gorilla troops optimization-based load frequency control in PV-thermal power system. Neural Comput. Appl.36, 4179–4193 (2024).
Gomaa Haroun, A. H. & Li, Y. A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics. ISA Trans.71, 364–379 (2017). PubMed
Khadanga, R. K., Kumar, A. & Panda, S. A novel modified whale optimization algorithm for load frequency controller design of a two-area power system composing of PV grid and thermal generator. Neural Comput. Appl.32, 8205–8216 (2020).
Dahiya, P. & Saha, A. K. Frequency regulation of Interconnected Power System Using Black Widow Optimization. IEEE Access.10, 25219–25236 (2022).
Çelik, E., Öztürk, N. & Houssein, E. H. Influence of energy storage device on load frequency control of an interconnected dual-area thermal and solar photovoltaic power system. Neural Comput. Appl.34, 20083–20099 (2022).
Khadanga, R. K., Kumar, A. & Panda, S. A hybrid shuffled frog-leaping and pattern search algorithm for load frequency controller design of a two‐area system composing of PV grid and thermal generator. Int. J. Numer. Model. Electron. Networks Devices Fields33, (2020).
Khadanga, R. K. & Kumar, A. Hybrid adaptive ‘gbest’-guided gravitational search and pattern search algorithm for automatic generation control of multi‐area power system. IET Generation Transmission Distribution. 11, 3257–3267 (2017).
Tomy, F. T. & Prakash, R. Load frequency control of a two area hybrid system consisting of a grid connected PV system and thermal generator. IJRET: Int. J. Res. Eng. Technol.3, 573–580 (2014).
Rizk-Allah, R. M., Snášel, V., Izci, D. & Ekinci, S. Spiral-refraction mutation prairie dog algorithm: optimization framework for engineering design of interconnected multimachine power system. Appl. Soft Comput.165, 112036 (2024).
Rizk-Allah, R. M. et al. Incorporating adaptive local search and experience-based perturbed learning into artificial rabbits optimizer for improved DC motor speed regulation. Int. J. Electr. Power Energy Syst.162, 110266 (2024).
Izci, D. et al. Dynamic load frequency control in power systems using a hybrid simulated annealing based quadratic interpolation optimizer. Sci. Rep.14, 26011 (2024). PubMed PMC