Treatment regimens and glycaemic outcomes in more than 100 000 children with type 1 diabetes (2013-22): a longitudinal analysis of data from paediatric diabetes registries
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39622257
DOI
10.1016/s2213-8587(24)00279-1
PII: S2213-8587(24)00279-1
Knihovny.cz E-zdroje
- MeSH
- diabetes mellitus 1. typu * epidemiologie krev farmakoterapie MeSH
- dítě MeSH
- glykovaný hemoglobin * analýza MeSH
- hypoglykemie epidemiologie MeSH
- hypoglykemika * terapeutické užití MeSH
- kojenec MeSH
- krevní glukóza * analýza MeSH
- lidé MeSH
- longitudinální studie MeSH
- mladiství MeSH
- předškolní dítě MeSH
- registrace * statistika a číselné údaje MeSH
- regulace glykemie statistika a číselné údaje metody MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykovaný hemoglobin * MeSH
- hemoglobin A1c protein, human MeSH Prohlížeč
- hypoglykemika * MeSH
- krevní glukóza * MeSH
BACKGROUND: Advances in paediatric type 1 diabetes management and increased use of diabetes technology have led to improvements in glycaemia, reduced risk of severe hypoglycaemia, and improved quality of life. Since 1993, progressively lower HbA1c targets have been set. The aim of this study was to perform a longitudinal analysis of HbA1c, treatment regimens, and acute complications between 2013 and 2022 using data from eight national and one international paediatric diabetes registries. METHODS: In this longitudinal analysis, we obtained data from the Australasian Diabetes Data Network, Czech National Childhood Diabetes Register, Danish Registry of Childhood and Adolescent Diabetes, Diabetes Prospective Follow-up Registry, Norwegian Childhood Diabetes Registry, England and Wales' National Paediatric Diabetes Audit, Swedish Childhood Diabetes Registry, T1D Exchange Quality Improvement Collaborative, and the SWEET initiative. All children (aged ≤18 years) with type 1 diabetes with a duration of longer than 3 months were included. Investigators compared data from 2013 to 2022; analyses performed on data were pre-defined and conducted separately by each respective registry. Data on demographics, HbA1c, treatment regimen, and event rates of diabetic ketoacidosis and severe hypoglycaemia were collected. ANOVA was performed to compare means between registries and years. Joinpoint regression analysis was used to study significant breakpoints in temporal trends. FINDINGS: In 2022, data were available for 109 494 children from the national registries and 35 590 from SWEET. Between 2013 and 2022, the aggregated mean HbA1c decreased from 8·2% (95% CI 8·1-8·3%; 66·5 mmol/mol [65·2-67·7]) to 7·6% (7·5-7·7; 59·4mmol/mol [58·2-60·5]), and the proportion of participants who had achieved HbA1c targets of less than 7% (<53 mmol/mol) increased from 19·0% to 38·8% (p<0·0001). In 2013, the aggregate event rate of severe hypoglycaemia rate was 3·0 events per 100 person-years (95% CI 2·0-4·9) compared with 1·7 events per 100 person-years (1·0-2·7) in 2022. In 2013, the aggregate event rate of diabetic ketoacidosis was 3·1 events per 100 person-years (95% CI 2·0-4·8) compared with 2·2 events per 100 person-years (1·4-3·4) in 2022. The proportion of participants with insulin pump use increased from 42·9% (95% CI 40·4-45·5) in 2013 to 60·2% (95% CI 57·9-62·6) in 2022 (mean difference 17·3% [13·8-20·7]; p<0·0001), and the proportion of participants using continuous glucose monitoring (CGM) increased from 18·7% (95% CI 9·5-28·0) in 2016 to 81·7% (73·0-90·4) in 2022 (mean difference 63·0% [50·3-75·7]; p<0·0001). INTERPRETATION: Between 2013 and 2022, glycaemic outcomes have improved, parallel to increased use of diabetes technology. Many children had HbA1c higher than the International Society for Pediatric and Adolescent Diabetes (ISPAD) 2022 target. Reassuringly, despite targeting lower HbA1c, severe hypoglycaemia event rates are decreasing. Even for children with type 1 diabetes who have access to specialised diabetes care and diabetes technology, further advances in diabetes management are required to assist with achieving ISPAD glycaemic targets. FUNDING: None. TRANSLATIONS: For the Norwegian, German, Czech, Danish and Swedish translations of the abstract see Supplementary Materials section.
Barbara Davis Center University of Colorado Aurora CO USA
Centre Hospitalier de Luxembourg Luxembourg City Luxembourg
Department of Endocrinology Queensland Children's Hospital Brisbane QLD Australia
Department of Paediatric and Adolescent Medicine Medical University of Graz Graz Austria
Department of Pediatrics Haugesund Hospital Fonna Health Trust Haugesund Norway
Division of Medicine Lyell McEwin Hospital Adelaide SA Australia
National Paediatric Diabetes Audit Noah's Ark Children's Hospital for Wales Cardiff UK
National Paediatric Diabetes Audit Royal College of Paediatrics and Child Health London UK
Royal College of Paediatrics and Child Health London UK
Steno Diabetes Center Copenhagen Herlev Denmark
T1D Exchange Boston MA USA; School of Medicine University of Mississippi Jackson MI USA
The Swedish National Diabetes Register Center of Registers Gothenburg Sweden
Citace poskytuje Crossref.org
Global Inequities in Diabetes Technology and Insulin Access and Glycemic Outcomes