Electro-optically modulated lossy-mode resonance

. 2022 Jan ; 11 (3) : 593-602. [epub] 20211215

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39633793

Sensitivity, selectivity, reliability, and measurement range of a sensor are vital parameters for its wide applications. Fast growing number of various detection systems seems to justify worldwide efforts to enhance one or some of the parameters. Therefore, as one of the possible solutions, multi-domain sensing schemes have been proposed. This means that the sensor is interrogated simultaneously in, e.g., optical and electrochemical domains. An opportunity to combine the domains within a single sensor is given by optically transparent and electrochemically active transparent conductive oxides (TCOs), such as indium tin oxide (ITO). This work aims to bring understanding of electro-optically modulated lossy-mode resonance (LMR) effect observed for ITO-coated optical fiber sensors. Experimental research supported by numerical modeling allowed for identification of the film properties responsible for performance in both domains, as well as interactions between them. It has been found that charge carrier density in the semiconducting ITO determines the efficiency of the electrochemical processes and the LMR properties. The carrier density boosts electrochemical activity but reduces capability of electro-optical modulation of the LMR. It has also been shown that the carrier density can be tuned by pressure during magnetron sputtering of ITO target. Thus, the pressure can be chosen as a parameter for optimization of electro-optical modulation of the LMR, as well as optical and electrochemical responses of the device, especially when it comes to label-free sensing and biosensing.

Zobrazit více v PubMed

Caliendo A. M., Gilbert D. N., Ginocchio C. C., et al. Better tests, better care: improved diagnostics for infectious diseases. Clin. Infect. Dis. . 2013;57(3):S139–S170. doi: 10.1093/cid/cit578. PubMed DOI PMC

Pejcic B., De Marco R., Parkinson G. The role of biosensors in the detection of emerging infectious diseases. Analyst . 2006;131(10):1079–1090. doi: 10.1039/b603402k. PubMed DOI

Chiavaioli F., Baldini F., Tombelli S., Trono C., Giannetti A. Biosensing with optical fiber gratings. Nanophotonics . 2017;6(4):663–679. doi: 10.1515/nanoph-2016-0178. DOI

Ghasemi-Varnamkhasti M., Apetrei C., Lozano J., Anyogu A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. . 2018;80:71–92. doi: 10.1016/j.tifs.2018.07.018. DOI

Eltzov E., Cosnier S., Marks R. S. Biosensors based on combined optical and electrochemical transduction for molecular diagnostics. Expert Rev. Mol. Diagn. . 2011;11(5):533–546. doi: 10.1586/erm.11.38. PubMed DOI

Wu C., ur Rehman F., Li J., et al. Real-time evaluation of live cancer cells by an in situ surface plasmon resonance and electrochemical study. ACS Appl. Mater. Interfaces . 2015;7(44):24848–24854. doi: 10.1021/acsami.5b08066. PubMed DOI

Chiu N. F., Du Yang C., Chen C. C., Kuo C. T. Stepwise control of reduction of graphene oxide and quantitative real-time evaluation of residual oxygen content using EC-SPR for a label-free electrochemical immunosensor. Sensor. Actuator. B Chem. . 2018;258:981–990. doi: 10.1016/j.snb.2017.11.187. DOI

Juan-Colás J., Parkin A., Dunn K. E., Scullion M. G., Krauss T. F., Johnson S. D. The electrophotonic silicon biosensor. Nat. Commun. . 2016;7(1):1–7. doi: 10.1038/ncomms12769. PubMed DOI PMC

Sombrio G., Ghithan J. H., O’Toole M. G., Moreno M., Chauhan R., Mendes S. B. Influenza virus immunosensor with an electro-active optical waveguide under potential modulation. Opt. Lett. . 2017;42(7):1205–1208. doi: 10.1364/OL.42.001205. PubMed DOI

Caucheteur C., Guo T., Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. . 2015;407(14):3883–3897. doi: 10.1007/s00216-014-8411-6. PubMed DOI PMC

Janczuk-Richter M., Piestrzyńska M., Burnat D., et al. Optical investigations of electrochemical processes using a long-period fiber grating functionalized by indium tin oxide. Sensor. Actuator. B Chem. . 2019;279:223–229. doi: 10.1016/j.snb.2018.10.001. DOI

Konry T., Novoa A., Cosnier S., Marks R. S. Development of an ‘electroptode’ immunosensor:indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera toxin B subunit. Anal. Chem.. . 2003;75(11):2633–2639. doi: 10.1021/ac026444q. PubMed DOI

Okazaki T., Shiokawa E., Orii T., et al. Simultaneous multiselective spectroelectrochemical fiber-optic sensor: sensing with an optically transparent electrode. Anal. Chem. . 2018;90(4):2440–2445. doi: 10.1021/acs.analchem.7b03957. PubMed DOI

Imai K., Okazaki T., Hata N., Taguchi S., Sugawara K., Kuramitz H. Simultaneous multiselective spectroelectrochemical fiber-optic sensor: demonstration of the concept using methylene blue and ferrocyanide. Anal. Chem. . 2015;87(4):2375–2382. doi: 10.1021/ac504321u. PubMed DOI

Park J., Bang D., Jang K., Kim E., Haam S., Na S. Multimodal label-free detection and discrimination for small molecules using a nanoporous resonator. Nat. Commun. . 2014;5(1):1–8. doi: 10.1038/ncomms4456. PubMed DOI

Śmietana M., Koba M., Sezemsky P., et al. Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor. Biosens. Bioelectron. . 2020;154:112050. doi: 10.1016/j.bios.2020.112050. PubMed DOI

Sezemsky P., Burnat D., Kratochvil J., et al. Tailoring properties of indium tin oxide thin films for their work in both electrochemical and optical label-free sensing systems. Sensor. Actuator. B Chem. . 2021;343:130173. doi: 10.1016/j.snb.2021.130173. DOI

Janik M., Niedziałkowski P., Lechowicz K., et al. Electrochemically directed biofunctionalization of a lossy-mode resonance optical fiber sensor. Opt. Express . 2020;2828(11):15934–15942. doi: 10.1364/oe.390780. PubMed DOI

Sobaszek M., Burnat D., Sezemsky P., et al. Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS. Opt. Mater. Express . 2019;9(7):3069–3078. doi: 10.1364/ome.9.003069. DOI

Lioubimov V., Kolomenskii A., Mershin A., Nanopoulos D. V., Schuessler H. A. Effect of varying electric potential on surface-plasmon resonance sensing. Appl. Opt. . 2004;43(17):3426–3432. doi: 10.1364/ao.43.003426. PubMed DOI

Ma Z., Li Z., Liu K., Ye C., Sorger V. J. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics . 2015;4(2):198–213. doi: 10.1515/nanoph-2015-0006. DOI

Reed G. T., Jason Png C. E. Silicon optical modulators. Mater. Today . 2005;8(1):40–50. doi: 10.1016/s1369-7021(04)00678-9. DOI

Smietana M., Sobaszek M., Michalak B., et al. Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode. J. Lightwave Technol. . 2018;36(4):954–960. doi: 10.1109/jlt.2018.2797083. DOI

Zubiate P., Urrutia A., Zamarreño C. R., et al. Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosens. Bioelectron. X . 2019;2:100026. doi: 10.1016/j.biosx.2019.100026. DOI

Chiavaioli F., Janner D. Fiber optic sensing with lossy mode resonances: applications and perspectives. J. Lightwave Technol. . 2021;39(12):3855–3870. doi: 10.1109/jlt.2021.3052137. DOI

Chiavaioli F., Zubiate P., Del Villar I., et al. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens. . 2018;3(5):936–943. doi: 10.1021/acssensors.7b00918. PubMed DOI

Del Villar I., Hernaez M., Zamarreno C. R., et al. Design rules for lossy mode resonance based sensors. Appl. Opt. . 2012;51(19):4298–4307. doi: 10.1364/ao.51.004298. PubMed DOI

Čada M., Adámek P., Straňák V., et al. Angle-resolved investigation of ion dynamics in high power impulse magnetron sputtering deposition system. Thin Solid Films . 2013;549:177–183.

Stranak V., Bogdanowicz R., Sezemsky P., et al. Towards high quality ITO coatings: the impact of nitrogen admixture in HiPIMS discharges. Surf. Coating. Technol. . 2018;335:126–133. doi: 10.1016/j.surfcoat.2017.12.030. DOI

Śmietana M., Niedziałkowski P., Białobrzeska W., et al. Study on combined optical and electrochemical analysis using indium-tin-oxide-coated optical fiber sensor. Electroanalysis . 2019;31(2):398–404.

Zhang K., Zhu F., Huan C. H. A., Wee A. T. S. Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films . 2000;376(1–2):255–263. doi: 10.1016/s0040-6090(00)01418-8. DOI

Chen Z., Zhuo Y., Tu W., et al. High mobility indium tin oxide thin film and its application at infrared wavelengths: model and experiment. Opt. Express . 26(17):22123–22134. doi: 10.1364/OE.26.022123. PubMed DOI

Niedziałkowski P., Białobrzeska W., Burnat D., et al. Electrochemical performance of indium-tin-oxide-coated lossy-mode resonance optical fiber sensor. Sensor. Actuator. B Chem. . 2019;301:127043.

Matsudaira A., Mehrotra S. R., Ahmed S. S., Klimeck G., Vasileska D. MOSCap. . 2014. [Sep. 30, 2021]. https://nanohub.org/resources/moscap accessed.

You J.-B., Baek J., Yu K. Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt. Express . 2015;23(12):15863–15876. doi: 10.1364/OE.23.015863. PubMed DOI

Noginov M. A., Gu L., Livenere J., et al. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. . 2011;99(2):021101. doi: 10.1063/1.3604792. DOI

Neumann F., Genenko Y. A., Melzer C., Yampolskii S. V., von Seggern H. Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface. Phys. Rev. B . 2007;75(20):205322. doi: 10.1103/physrevb.75.205322. DOI

Heavens O. S. Optical Properties of Thin Solid Films . New York: Dover Publications; 1991.

Śmietana M., Dudek M., Koba M., Michalak B. Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres. Phys. Status Solidi . 2013;210(10):2100–2105.

Del Villar I., Zamarreño C. R., Hernaez M., Arregui F. J., Matias I. R. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J. Lightwave Technol. . 2010;28(1):111–117. doi: 10.1109/jlt.2009.2036580. DOI

Dasgupta S., Lukas M., Dössel K., Kruk R., Hahn H. Electron mobility variations in surface-charged indium tin oxide thin films. Phys. Rev. B . 2009;80(8):085425. doi: 10.1103/physrevb.80.085425. DOI

Saeidmanesh M., Webb J. F., Ahmadi M. T., Abadi H. K. F., Rahmani M., Ismail R. Carrier concentration modeling of bilayer graphene. AIP Conf. Proc. . 2012;1499(1):280. doi: 10.1063/1.4769002. DOI

Tahersima M. H., Ma Z., Gui Y., et al. Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics. Nanophotonics . 2019;8(9):1559–1566. doi: 10.1515/nanoph-2019-0153. DOI

Hippler R., Pfau S., Schmidt M., Schoenbach K. H., editors. Low Temperature Plasma Physics: Fundamental Aspects and Applications . 1st ed. Weinheim: Wiley-VCH; 2001.

Anders A. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films . 2010;518(15):4087–4090. doi: 10.1016/j.tsf.2009.10.145. DOI

Stranak V., Herrendorf A. P., Wulff H., et al. Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering. Surf. Coating. Technol. . 2013;222:112–117. doi: 10.1016/j.surfcoat.2013.02.012. DOI

Mráz S., Schneider J. M. Structure evolution of magnetron sputtered TiO2 thin films. J. Appl. Phys. . 2011;109(2):023512. doi: 10.1063/1.3536635. DOI

Song P. K., Shigesato Y., Yasui I., Ow-Yang C. W., Paine D. C. Study on crystallinity of tin-doped indium oxide films deposited by DC magnetron sputtering. Jpn. J. Appl. Phys. . 1998;37(4R):1870. doi: 10.1143/jjap.37.1870. DOI

Tseng K. S., Lo Y. L. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates. Appl. Surf. Sci. . 2013;285(Part B):157–166. doi: 10.1016/j.apsusc.2013.08.024. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...