Electro-optically modulated lossy-mode resonance
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39633793
PubMed Central
PMC11501259
DOI
10.1515/nanoph-2021-0687
PII: nanoph-2021-0687
Knihovny.cz E-zdroje
- Klíčová slova
- electro-optical modulation, label-free sensing, lossy-mode resonance, magnetron sputtering, optical fiber sensor, transparent conductive oxides (TCOs),
- Publikační typ
- časopisecké články MeSH
Sensitivity, selectivity, reliability, and measurement range of a sensor are vital parameters for its wide applications. Fast growing number of various detection systems seems to justify worldwide efforts to enhance one or some of the parameters. Therefore, as one of the possible solutions, multi-domain sensing schemes have been proposed. This means that the sensor is interrogated simultaneously in, e.g., optical and electrochemical domains. An opportunity to combine the domains within a single sensor is given by optically transparent and electrochemically active transparent conductive oxides (TCOs), such as indium tin oxide (ITO). This work aims to bring understanding of electro-optically modulated lossy-mode resonance (LMR) effect observed for ITO-coated optical fiber sensors. Experimental research supported by numerical modeling allowed for identification of the film properties responsible for performance in both domains, as well as interactions between them. It has been found that charge carrier density in the semiconducting ITO determines the efficiency of the electrochemical processes and the LMR properties. The carrier density boosts electrochemical activity but reduces capability of electro-optical modulation of the LMR. It has also been shown that the carrier density can be tuned by pressure during magnetron sputtering of ITO target. Thus, the pressure can be chosen as a parameter for optimization of electro-optical modulation of the LMR, as well as optical and electrochemical responses of the device, especially when it comes to label-free sensing and biosensing.
National Institute of Telecommunications Szachowa 1 04 894 Warsaw Poland
University of South Bohemia Branisovska 31 37005 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Caliendo A. M., Gilbert D. N., Ginocchio C. C., et al. Better tests, better care: improved diagnostics for infectious diseases. Clin. Infect. Dis. . 2013;57(3):S139–S170. doi: 10.1093/cid/cit578. PubMed DOI PMC
Pejcic B., De Marco R., Parkinson G. The role of biosensors in the detection of emerging infectious diseases. Analyst . 2006;131(10):1079–1090. doi: 10.1039/b603402k. PubMed DOI
Chiavaioli F., Baldini F., Tombelli S., Trono C., Giannetti A. Biosensing with optical fiber gratings. Nanophotonics . 2017;6(4):663–679. doi: 10.1515/nanoph-2016-0178. DOI
Ghasemi-Varnamkhasti M., Apetrei C., Lozano J., Anyogu A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. . 2018;80:71–92. doi: 10.1016/j.tifs.2018.07.018. DOI
Eltzov E., Cosnier S., Marks R. S. Biosensors based on combined optical and electrochemical transduction for molecular diagnostics. Expert Rev. Mol. Diagn. . 2011;11(5):533–546. doi: 10.1586/erm.11.38. PubMed DOI
Wu C., ur Rehman F., Li J., et al. Real-time evaluation of live cancer cells by an in situ surface plasmon resonance and electrochemical study. ACS Appl. Mater. Interfaces . 2015;7(44):24848–24854. doi: 10.1021/acsami.5b08066. PubMed DOI
Chiu N. F., Du Yang C., Chen C. C., Kuo C. T. Stepwise control of reduction of graphene oxide and quantitative real-time evaluation of residual oxygen content using EC-SPR for a label-free electrochemical immunosensor. Sensor. Actuator. B Chem. . 2018;258:981–990. doi: 10.1016/j.snb.2017.11.187. DOI
Juan-Colás J., Parkin A., Dunn K. E., Scullion M. G., Krauss T. F., Johnson S. D. The electrophotonic silicon biosensor. Nat. Commun. . 2016;7(1):1–7. doi: 10.1038/ncomms12769. PubMed DOI PMC
Sombrio G., Ghithan J. H., O’Toole M. G., Moreno M., Chauhan R., Mendes S. B. Influenza virus immunosensor with an electro-active optical waveguide under potential modulation. Opt. Lett. . 2017;42(7):1205–1208. doi: 10.1364/OL.42.001205. PubMed DOI
Caucheteur C., Guo T., Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem. . 2015;407(14):3883–3897. doi: 10.1007/s00216-014-8411-6. PubMed DOI PMC
Janczuk-Richter M., Piestrzyńska M., Burnat D., et al. Optical investigations of electrochemical processes using a long-period fiber grating functionalized by indium tin oxide. Sensor. Actuator. B Chem. . 2019;279:223–229. doi: 10.1016/j.snb.2018.10.001. DOI
Konry T., Novoa A., Cosnier S., Marks R. S. Development of an ‘electroptode’ immunosensor:indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera toxin B subunit. Anal. Chem.. . 2003;75(11):2633–2639. doi: 10.1021/ac026444q. PubMed DOI
Okazaki T., Shiokawa E., Orii T., et al. Simultaneous multiselective spectroelectrochemical fiber-optic sensor: sensing with an optically transparent electrode. Anal. Chem. . 2018;90(4):2440–2445. doi: 10.1021/acs.analchem.7b03957. PubMed DOI
Imai K., Okazaki T., Hata N., Taguchi S., Sugawara K., Kuramitz H. Simultaneous multiselective spectroelectrochemical fiber-optic sensor: demonstration of the concept using methylene blue and ferrocyanide. Anal. Chem. . 2015;87(4):2375–2382. doi: 10.1021/ac504321u. PubMed DOI
Park J., Bang D., Jang K., Kim E., Haam S., Na S. Multimodal label-free detection and discrimination for small molecules using a nanoporous resonator. Nat. Commun. . 2014;5(1):1–8. doi: 10.1038/ncomms4456. PubMed DOI
Śmietana M., Koba M., Sezemsky P., et al. Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor. Biosens. Bioelectron. . 2020;154:112050. doi: 10.1016/j.bios.2020.112050. PubMed DOI
Sezemsky P., Burnat D., Kratochvil J., et al. Tailoring properties of indium tin oxide thin films for their work in both electrochemical and optical label-free sensing systems. Sensor. Actuator. B Chem. . 2021;343:130173. doi: 10.1016/j.snb.2021.130173. DOI
Janik M., Niedziałkowski P., Lechowicz K., et al. Electrochemically directed biofunctionalization of a lossy-mode resonance optical fiber sensor. Opt. Express . 2020;2828(11):15934–15942. doi: 10.1364/oe.390780. PubMed DOI
Sobaszek M., Burnat D., Sezemsky P., et al. Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS. Opt. Mater. Express . 2019;9(7):3069–3078. doi: 10.1364/ome.9.003069. DOI
Lioubimov V., Kolomenskii A., Mershin A., Nanopoulos D. V., Schuessler H. A. Effect of varying electric potential on surface-plasmon resonance sensing. Appl. Opt. . 2004;43(17):3426–3432. doi: 10.1364/ao.43.003426. PubMed DOI
Ma Z., Li Z., Liu K., Ye C., Sorger V. J. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics . 2015;4(2):198–213. doi: 10.1515/nanoph-2015-0006. DOI
Reed G. T., Jason Png C. E. Silicon optical modulators. Mater. Today . 2005;8(1):40–50. doi: 10.1016/s1369-7021(04)00678-9. DOI
Smietana M., Sobaszek M., Michalak B., et al. Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode. J. Lightwave Technol. . 2018;36(4):954–960. doi: 10.1109/jlt.2018.2797083. DOI
Zubiate P., Urrutia A., Zamarreño C. R., et al. Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosens. Bioelectron. X . 2019;2:100026. doi: 10.1016/j.biosx.2019.100026. DOI
Chiavaioli F., Janner D. Fiber optic sensing with lossy mode resonances: applications and perspectives. J. Lightwave Technol. . 2021;39(12):3855–3870. doi: 10.1109/jlt.2021.3052137. DOI
Chiavaioli F., Zubiate P., Del Villar I., et al. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens. . 2018;3(5):936–943. doi: 10.1021/acssensors.7b00918. PubMed DOI
Del Villar I., Hernaez M., Zamarreno C. R., et al. Design rules for lossy mode resonance based sensors. Appl. Opt. . 2012;51(19):4298–4307. doi: 10.1364/ao.51.004298. PubMed DOI
Čada M., Adámek P., Straňák V., et al. Angle-resolved investigation of ion dynamics in high power impulse magnetron sputtering deposition system. Thin Solid Films . 2013;549:177–183.
Stranak V., Bogdanowicz R., Sezemsky P., et al. Towards high quality ITO coatings: the impact of nitrogen admixture in HiPIMS discharges. Surf. Coating. Technol. . 2018;335:126–133. doi: 10.1016/j.surfcoat.2017.12.030. DOI
Śmietana M., Niedziałkowski P., Białobrzeska W., et al. Study on combined optical and electrochemical analysis using indium-tin-oxide-coated optical fiber sensor. Electroanalysis . 2019;31(2):398–404.
Zhang K., Zhu F., Huan C. H. A., Wee A. T. S. Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films . 2000;376(1–2):255–263. doi: 10.1016/s0040-6090(00)01418-8. DOI
Chen Z., Zhuo Y., Tu W., et al. High mobility indium tin oxide thin film and its application at infrared wavelengths: model and experiment. Opt. Express . 26(17):22123–22134. doi: 10.1364/OE.26.022123. PubMed DOI
Niedziałkowski P., Białobrzeska W., Burnat D., et al. Electrochemical performance of indium-tin-oxide-coated lossy-mode resonance optical fiber sensor. Sensor. Actuator. B Chem. . 2019;301:127043.
Matsudaira A., Mehrotra S. R., Ahmed S. S., Klimeck G., Vasileska D. MOSCap. . 2014. [Sep. 30, 2021]. https://nanohub.org/resources/moscap accessed.
You J.-B., Baek J., Yu K. Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt. Express . 2015;23(12):15863–15876. doi: 10.1364/OE.23.015863. PubMed DOI
Noginov M. A., Gu L., Livenere J., et al. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. . 2011;99(2):021101. doi: 10.1063/1.3604792. DOI
Neumann F., Genenko Y. A., Melzer C., Yampolskii S. V., von Seggern H. Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface. Phys. Rev. B . 2007;75(20):205322. doi: 10.1103/physrevb.75.205322. DOI
Heavens O. S. Optical Properties of Thin Solid Films . New York: Dover Publications; 1991.
Śmietana M., Dudek M., Koba M., Michalak B. Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres. Phys. Status Solidi . 2013;210(10):2100–2105.
Del Villar I., Zamarreño C. R., Hernaez M., Arregui F. J., Matias I. R. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J. Lightwave Technol. . 2010;28(1):111–117. doi: 10.1109/jlt.2009.2036580. DOI
Dasgupta S., Lukas M., Dössel K., Kruk R., Hahn H. Electron mobility variations in surface-charged indium tin oxide thin films. Phys. Rev. B . 2009;80(8):085425. doi: 10.1103/physrevb.80.085425. DOI
Saeidmanesh M., Webb J. F., Ahmadi M. T., Abadi H. K. F., Rahmani M., Ismail R. Carrier concentration modeling of bilayer graphene. AIP Conf. Proc. . 2012;1499(1):280. doi: 10.1063/1.4769002. DOI
Tahersima M. H., Ma Z., Gui Y., et al. Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics. Nanophotonics . 2019;8(9):1559–1566. doi: 10.1515/nanoph-2019-0153. DOI
Hippler R., Pfau S., Schmidt M., Schoenbach K. H., editors. Low Temperature Plasma Physics: Fundamental Aspects and Applications . 1st ed. Weinheim: Wiley-VCH; 2001.
Anders A. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films . 2010;518(15):4087–4090. doi: 10.1016/j.tsf.2009.10.145. DOI
Stranak V., Herrendorf A. P., Wulff H., et al. Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering. Surf. Coating. Technol. . 2013;222:112–117. doi: 10.1016/j.surfcoat.2013.02.012. DOI
Mráz S., Schneider J. M. Structure evolution of magnetron sputtered TiO2 thin films. J. Appl. Phys. . 2011;109(2):023512. doi: 10.1063/1.3536635. DOI
Song P. K., Shigesato Y., Yasui I., Ow-Yang C. W., Paine D. C. Study on crystallinity of tin-doped indium oxide films deposited by DC magnetron sputtering. Jpn. J. Appl. Phys. . 1998;37(4R):1870. doi: 10.1143/jjap.37.1870. DOI
Tseng K. S., Lo Y. L. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates. Appl. Surf. Sci. . 2013;285(Part B):157–166. doi: 10.1016/j.apsusc.2013.08.024. DOI