Two-dimensional quantitative near-field phase imaging using square and hexagonal interference devices

. 2022 Sep ; 11 (19) : 4375-4386. [epub] 20220826

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39634164

We demonstrate the formation of the near field with non-trivial phase distribution using surface plasmon interference devices, and experimental quantitative imaging of that phase with near-field phase microscopy. The phase distribution formed with a single device can be controlled by the polarization of the external illumination and the area of the device assigned to the object wave. A comparison of the experimental data to a numerical electromagnetic model and an analytical model assigns the origin of the near-field phase to the out-of-plane electric component of surface plasmon polaritons, and also verifies the predictive power of the models. We demonstrate a formation of near-field plane waves with different propagation directions on a single device, or even simultaneously at distinct areas of a single device. Our findings open the way to the imaging and tomography of phase objects in the near field.

Zobrazit více v PubMed

Kou S. S., Yuan G., Wang Q., et al. On-chip photonic Fourier transform with surface plasmon polaritons. Light Sci. Appl. . 2016;5(2):e16034. doi: 10.1038/lsa.2016.34. PubMed DOI PMC

Brongersma M. L., Shalaev V. M. The case for plasmonics. Science . 2010;328(5977):440–441. doi: 10.1126/science.1186905. PubMed DOI

Berini P., De Leon I. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics . 2012;6(1):16–24. doi: 10.1038/nphoton.2011.285. DOI

Tang W. X., Zhang H. C., Ma H. F., Jiang W. X., Cui T. J. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv. Opt. Mater. . 2019;7(1):1800421. doi: 10.1002/adom.201800421. DOI

Zia R., Brongersma M. L. Surface plasmon polariton analogue to Young’s double-slit experiment. Nat. Nanotechnol. . 2007;2(7):426–429. doi: 10.1038/nnano.2007.185. PubMed DOI

Lin J., Mueller J. P. B., Wang Q., et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science . 2013;340:331–334. doi: 10.1126/science.1233746. PubMed DOI

Barnes W. L., Dereux A., Ebbesen T. W. Surface plasmon subwavelength optics. Nature . 2003;424(6950):824–830. doi: 10.1038/nature01937. PubMed DOI

Zayats A. V., Smolyaninov I. I., Maradudin A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. . 2005;408(3–4):131–314. doi: 10.1016/j.physrep.2004.11.001. DOI

le Feber B., Rotenberg N., Beggs D. M., Kuipers L. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics . 2013;8(1):43–46. doi: 10.1038/nphoton.2013.323. DOI

Brongersma M. L., Zia R., Schuller J. A. Plasmonics – the missing link between nanoelectronics and microphotonics. Appl. Phys. A . 2007;89(2):221–223. doi: 10.1007/s00339-007-4151-1. DOI

Dvořák P., Neuman T., Břínek L., et al. Control and near-field detection of surface plasmon interference patterns. Nano Lett. . 2013;13(6):2558–2563. doi: 10.1021/nl400644r. PubMed DOI

Rotenberg N., Kuipers L. Mapping nanoscale light fields. Nat. Photonics . 2014;8(12):919–926. doi: 10.1038/nphoton.2014.285. DOI

Carney P. S., Deutsch B., Govyadinov A. A., Hillenbrand R. Phase in nanooptics. ACS Nano . 2012;6(1):8–12. doi: 10.1021/nn205008y. PubMed DOI

Balistreri M. L. M., Korterik J. P., Kuipers L., van Hulst N. F. Local observations of phase singularities in optical fields in waveguide structures. Phys. Rev. Lett. . 2000;85(2):294–297. doi: 10.1103/PhysRevLett.85.294. PubMed DOI

Hillenbrand R., Keilmann F. Complex optical Constants on a subwavelength scale. Phys. Rev. Lett. . 2000;85(14):3029–3032. doi: 10.1103/PhysRevLett.85.3029. PubMed DOI

De Angelis L., Alpeggiani F., Di Falco A., Kuipers L. Spatial distribution of phase singularities in optical random vector waves. Phys. Rev. Lett. . 2016;117(9):093901. doi: 10.1103/PhysRevLett.117.093901. PubMed DOI

De Angelis L., Kuipers L. Effective pair-interaction of phase singularities in random waves. Opt. Lett. . 2021;46(11):2734. doi: 10.1364/OL.422910. PubMed DOI

Park Y., Depeursinge C., Popescu G. Quantitative phase imaging in biomedicine. Nat. Photonics . 2018;12(10):578–589. doi: 10.1038/s41566-018-0253-x. DOI

Kolman P., Chmelík R. Coherence-controlled holographic microscope. Opt. Express . 2010;18(21):21990–22003. doi: 10.1364/OE.18.021990. PubMed DOI

Wang Z., Millet L., Mir M., et al. Spatial light interference microscopy (SLIM) Opt. Express . 2011;19(2):1016. doi: 10.1364/OE.19.001016. PubMed DOI PMC

Choi Y., Yang T. D., Lee K. J., Choi W. Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination. Opt. Lett. . 2011;36(13):2465. doi: 10.1364/OL.36.002465. PubMed DOI

Zangle T. A., Teitell M. A. Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat. Methods . 2014;11(12):1221–1228. doi: 10.1038/nmeth.3175. PubMed DOI PMC

Babocký J., Křížová A., Štrbková L., et al. Quantitative 3D phase imaging of plasmonic metasurfaces. ACS Photonics . 2017;4(6):1389–1397. doi: 10.1021/acsphotonics.7b00022. DOI

Bouchal P., Dvořák P., Babocký J., et al. High-resolution quantitative phase imaging of plasmonic metasurfaces with sensitivity down to a single nanoantenna. Nano Lett. . 2019;19(2):1242–1250. doi: 10.1021/acs.nanolett.8b04776. PubMed DOI

Bouchal P., Štrbková L., Dostál Z., Chmelík R., Bouchal Z. Geometric-phase microscopy for quantitative phase imaging of isotropic, birefringent and space-variant polarization samples. Sci. Rep. . 2019;9(1):3608. doi: 10.1038/s41598-019-40441-9. PubMed DOI PMC

Kwon H., Arbabi E., Kamali S. M., Faraji-Dana M., Faraon A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics . 2020;14(2):109–114. doi: 10.1038/s41566-019-0536-x. DOI

Wu Y., Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods . 2018;136:4–16. doi: 10.1016/j.ymeth.2017.08.013. PubMed DOI

Maiden A. M., Rodenburg J. M., Humphry M. J. Optical ptychography: a practical implementation with useful resolution. Opt. Lett. . 2010;35(15):2585. doi: 10.1364/OL.35.002585. PubMed DOI

Paganin D., Nugent K. A. Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett. . 1998;80(12):2586–2589. doi: 10.1103/PhysRevLett.80.2586. DOI

Baek Y., Park Y. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics . 2021;15(5):354–360. doi: 10.1038/s41566-021-00760-8. DOI

Bazylewski P., Ezugwu S., Fanchini G. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management. Appl. Sci. . 2017;7(10):973. doi: 10.3390/app7100973. DOI

Neuman T., Alonso-González P., Garcia-Etxarri A., Schnell M., Hillenbrand R., Aizpurua J. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photon. Rev. . 2015;9(6):637–649. doi: 10.1002/lpor.201500031. DOI

Schnell M., Garcia-Etxarri A., Huber A. J., et al. Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy. J. Phys. Chem. C . 2010;114(16):7341–7345. doi: 10.1021/jp909252z. DOI

Zenhausern F., O’Boyle M. P., Wickramasinghe H. K. Apertureless near‐field optical microscope. Appl. Phys. Lett. . 1994;65(13):1623–1625. doi: 10.1063/1.112931. DOI

Hecht B., Bielefeldt H., Inouye Y., Pohl D. W., Novotny L. Facts and artifacts in near-field optical microscopy. J. Appl. Phys. . 1997;81(6):2492–2498. doi: 10.1063/1.363956. DOI

Apuzzo A., Février M., Salas-Montiel R., et al. Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide. Nano Lett. . 2013;13(3):1000–1006. doi: 10.1021/nl304164y. PubMed DOI

Tellez-Limon R., Blaize S., Gardillou F., Coello V., Salas-Montiel R. Excitation of surface plasmon polaritons in a gold nanoslab on ion-exchanged waveguide technology. Appl. Opt. . 2020;59(2):572. doi: 10.1364/AO.381915. PubMed DOI

Tellez-Limon R., Gardillou F., Coello V., Salas-Montiel R. Coupled localized surface plasmon resonances in periodic arrays of gold nanowires on ion-exchange waveguide technology. J. Opt. . 2021;23(2):025801. doi: 10.1088/2040-8986/abcfd5. DOI

Kihm H. W., Kim J., Koo S., et al. Optical magnetic field mapping using a subwavelength aperture. Opt. Express . 2013;21(5):5625. doi: 10.1364/OE.21.005625. PubMed DOI

Tortora P., Abashin M., Märki I., et al. Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 um by use of heterodyne scanning near-field optical microscopy. Opt. Lett. . 2005;30(21):2885. doi: 10.1364/OL.30.002885. PubMed DOI

Gersen H., van Dijk E. M. H. P., Korterik J. P., van Hulst N. F., Kuipers L. Phase mapping of ultrashort pulses in bimodal photonic structures: a window on local group velocity dispersion. Phys. Rev. E . 2004;70(6):066609. doi: 10.1103/PhysRevE.70.066609. PubMed DOI

Gersen H., Karle T. J., Engelen R. J. P., et al. Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides. Phys. Rev. Lett. . 2005;94(12):123901. doi: 10.1103/PhysRevLett.94.123901. PubMed DOI

Burresi M., Diessel D., van Oosten D., Linden S., Wegener M., Kuipers L. Negative-index metamaterials: looking into the unit cell. Nano Lett. 2010;10(7):2480–2483. doi: 10.1021/nl100943e. PubMed DOI

Nelson J. W., Knefelkamp G. R., Brolo A. G., Lindquist N. C. Digital plasmonic holography. Light Sci. Appl. . 2018;7(1):52. doi: 10.1038/s41377-018-0049-2. PubMed DOI PMC

Dvořák P., Kvapil M., Bouchal P., et al. Near-field digital holography: a tool for plasmon phase imaging. Nanoscale . 2018;10(45):21363–21368. doi: 10.1039/C8NR07438K. PubMed DOI

Garcia-Vidal F. J., Martin-Moreno L., Ebbesen T. W., Kuipers L. Light passing through subwavelength apertures. Rev. Mod. Phys. . 2010;82(1):729–787. doi: 10.1103/RevModPhys.82.729. DOI

Dvořák P., Édes Z., Kvapil M., et al. Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state. Opt. Express . 2017;25(14):16560. doi: 10.1364/OE.25.016560. PubMed DOI

Deans S. R. The Radon Transform and Some of its Applications . Mineola, New York: Dover Publications; 1993.

Liu Z., Durant S., Lee H., et al. Near-field Moiré effect mediated by surface plasmon polariton excitation. Opt. Lett. . 2007;32(6):629. doi: 10.1364/OL.32.000629. PubMed DOI

Yuan G., Wang Q., Yuan X. Dynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam. Opt. Lett. . 2012;37(13):2715. doi: 10.1364/OL.37.002715. PubMed DOI

Bliokh K. Y., Bekshaev A. Y., Nori F. Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett. . 2017;119(7):073901. doi: 10.1103/PhysRevLett.119.073901. PubMed DOI

Schnell M., Sarriugarte P., Neuman T., et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces. Nano Lett. . 2016;16(1):663–670. doi: 10.1021/acs.nanolett.5b04416. PubMed DOI

Valev V. K., Baumberg J. J., Sibilia C., Verbiest T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. . 2013;25(18):2517–2534. doi: 10.1002/adma.201205178. PubMed DOI

Zhou G. Analytical vectorial structure of Laguerre-Gaussian beam in the far field. Opt. Lett. . 2006;31(17):2616. doi: 10.1364/OL.31.002616. PubMed DOI

Faßbender A., Babocký J., Dvořák P., Křápek V., Linden S. Direct phase mapping of broadband Laguerre-Gaussian metasurfaces. APL Photonics . 2018;3(11):110803. doi: 10.1063/1.5049368. DOI

Takei N., Sommer C., Genes C., et al. Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas. Nat. Commun. . 2016;7(1):13449. doi: 10.1038/ncomms13449. PubMed DOI PMC

Hamedi H. R., Kudriašov V., Jia N., Qian J., Juzeliūnas G. Ferris wheel patterning of Rydberg atoms using electromagnetically induced transparency with optical vortex fields. Opt. Lett. . 2021;46(17):4204. doi: 10.1364/OL.427000. PubMed DOI

Vakulenko A., Kiriushechkina S., Wang M., et al. Near‐field characterization of higher‐order topological photonic states at optical frequencies. Adv. Mater. . 2021;33(18):2004376. doi: 10.1002/adma.202004376. PubMed DOI

Palik E. D. Handbook of Optical Constants of Solids . Vol. 1. San Diego: Elsevier; 1985.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...