Two-dimensional quantitative near-field phase imaging using square and hexagonal interference devices
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39634164
PubMed Central
PMC11501331
DOI
10.1515/nanoph-2022-0215
PII: nanoph-2022-0215
Knihovny.cz E-zdroje
- Klíčová slova
- SNOM, SPP waves, interference nanostructures, near-field, phase imaging,
- Publikační typ
- časopisecké články MeSH
We demonstrate the formation of the near field with non-trivial phase distribution using surface plasmon interference devices, and experimental quantitative imaging of that phase with near-field phase microscopy. The phase distribution formed with a single device can be controlled by the polarization of the external illumination and the area of the device assigned to the object wave. A comparison of the experimental data to a numerical electromagnetic model and an analytical model assigns the origin of the near-field phase to the out-of-plane electric component of surface plasmon polaritons, and also verifies the predictive power of the models. We demonstrate a formation of near-field plane waves with different propagation directions on a single device, or even simultaneously at distinct areas of a single device. Our findings open the way to the imaging and tomography of phase objects in the near field.
Zobrazit více v PubMed
Kou S. S., Yuan G., Wang Q., et al. On-chip photonic Fourier transform with surface plasmon polaritons. Light Sci. Appl. . 2016;5(2):e16034. doi: 10.1038/lsa.2016.34. PubMed DOI PMC
Brongersma M. L., Shalaev V. M. The case for plasmonics. Science . 2010;328(5977):440–441. doi: 10.1126/science.1186905. PubMed DOI
Berini P., De Leon I. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics . 2012;6(1):16–24. doi: 10.1038/nphoton.2011.285. DOI
Tang W. X., Zhang H. C., Ma H. F., Jiang W. X., Cui T. J. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv. Opt. Mater. . 2019;7(1):1800421. doi: 10.1002/adom.201800421. DOI
Zia R., Brongersma M. L. Surface plasmon polariton analogue to Young’s double-slit experiment. Nat. Nanotechnol. . 2007;2(7):426–429. doi: 10.1038/nnano.2007.185. PubMed DOI
Lin J., Mueller J. P. B., Wang Q., et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science . 2013;340:331–334. doi: 10.1126/science.1233746. PubMed DOI
Barnes W. L., Dereux A., Ebbesen T. W. Surface plasmon subwavelength optics. Nature . 2003;424(6950):824–830. doi: 10.1038/nature01937. PubMed DOI
Zayats A. V., Smolyaninov I. I., Maradudin A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. . 2005;408(3–4):131–314. doi: 10.1016/j.physrep.2004.11.001. DOI
le Feber B., Rotenberg N., Beggs D. M., Kuipers L. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics . 2013;8(1):43–46. doi: 10.1038/nphoton.2013.323. DOI
Brongersma M. L., Zia R., Schuller J. A. Plasmonics – the missing link between nanoelectronics and microphotonics. Appl. Phys. A . 2007;89(2):221–223. doi: 10.1007/s00339-007-4151-1. DOI
Dvořák P., Neuman T., Břínek L., et al. Control and near-field detection of surface plasmon interference patterns. Nano Lett. . 2013;13(6):2558–2563. doi: 10.1021/nl400644r. PubMed DOI
Rotenberg N., Kuipers L. Mapping nanoscale light fields. Nat. Photonics . 2014;8(12):919–926. doi: 10.1038/nphoton.2014.285. DOI
Carney P. S., Deutsch B., Govyadinov A. A., Hillenbrand R. Phase in nanooptics. ACS Nano . 2012;6(1):8–12. doi: 10.1021/nn205008y. PubMed DOI
Balistreri M. L. M., Korterik J. P., Kuipers L., van Hulst N. F. Local observations of phase singularities in optical fields in waveguide structures. Phys. Rev. Lett. . 2000;85(2):294–297. doi: 10.1103/PhysRevLett.85.294. PubMed DOI
Hillenbrand R., Keilmann F. Complex optical Constants on a subwavelength scale. Phys. Rev. Lett. . 2000;85(14):3029–3032. doi: 10.1103/PhysRevLett.85.3029. PubMed DOI
De Angelis L., Alpeggiani F., Di Falco A., Kuipers L. Spatial distribution of phase singularities in optical random vector waves. Phys. Rev. Lett. . 2016;117(9):093901. doi: 10.1103/PhysRevLett.117.093901. PubMed DOI
De Angelis L., Kuipers L. Effective pair-interaction of phase singularities in random waves. Opt. Lett. . 2021;46(11):2734. doi: 10.1364/OL.422910. PubMed DOI
Park Y., Depeursinge C., Popescu G. Quantitative phase imaging in biomedicine. Nat. Photonics . 2018;12(10):578–589. doi: 10.1038/s41566-018-0253-x. DOI
Kolman P., Chmelík R. Coherence-controlled holographic microscope. Opt. Express . 2010;18(21):21990–22003. doi: 10.1364/OE.18.021990. PubMed DOI
Wang Z., Millet L., Mir M., et al. Spatial light interference microscopy (SLIM) Opt. Express . 2011;19(2):1016. doi: 10.1364/OE.19.001016. PubMed DOI PMC
Choi Y., Yang T. D., Lee K. J., Choi W. Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination. Opt. Lett. . 2011;36(13):2465. doi: 10.1364/OL.36.002465. PubMed DOI
Zangle T. A., Teitell M. A. Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat. Methods . 2014;11(12):1221–1228. doi: 10.1038/nmeth.3175. PubMed DOI PMC
Babocký J., Křížová A., Štrbková L., et al. Quantitative 3D phase imaging of plasmonic metasurfaces. ACS Photonics . 2017;4(6):1389–1397. doi: 10.1021/acsphotonics.7b00022. DOI
Bouchal P., Dvořák P., Babocký J., et al. High-resolution quantitative phase imaging of plasmonic metasurfaces with sensitivity down to a single nanoantenna. Nano Lett. . 2019;19(2):1242–1250. doi: 10.1021/acs.nanolett.8b04776. PubMed DOI
Bouchal P., Štrbková L., Dostál Z., Chmelík R., Bouchal Z. Geometric-phase microscopy for quantitative phase imaging of isotropic, birefringent and space-variant polarization samples. Sci. Rep. . 2019;9(1):3608. doi: 10.1038/s41598-019-40441-9. PubMed DOI PMC
Kwon H., Arbabi E., Kamali S. M., Faraji-Dana M., Faraon A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics . 2020;14(2):109–114. doi: 10.1038/s41566-019-0536-x. DOI
Wu Y., Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods . 2018;136:4–16. doi: 10.1016/j.ymeth.2017.08.013. PubMed DOI
Maiden A. M., Rodenburg J. M., Humphry M. J. Optical ptychography: a practical implementation with useful resolution. Opt. Lett. . 2010;35(15):2585. doi: 10.1364/OL.35.002585. PubMed DOI
Paganin D., Nugent K. A. Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett. . 1998;80(12):2586–2589. doi: 10.1103/PhysRevLett.80.2586. DOI
Baek Y., Park Y. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics . 2021;15(5):354–360. doi: 10.1038/s41566-021-00760-8. DOI
Bazylewski P., Ezugwu S., Fanchini G. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management. Appl. Sci. . 2017;7(10):973. doi: 10.3390/app7100973. DOI
Neuman T., Alonso-González P., Garcia-Etxarri A., Schnell M., Hillenbrand R., Aizpurua J. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photon. Rev. . 2015;9(6):637–649. doi: 10.1002/lpor.201500031. DOI
Schnell M., Garcia-Etxarri A., Huber A. J., et al. Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy. J. Phys. Chem. C . 2010;114(16):7341–7345. doi: 10.1021/jp909252z. DOI
Zenhausern F., O’Boyle M. P., Wickramasinghe H. K. Apertureless near‐field optical microscope. Appl. Phys. Lett. . 1994;65(13):1623–1625. doi: 10.1063/1.112931. DOI
Hecht B., Bielefeldt H., Inouye Y., Pohl D. W., Novotny L. Facts and artifacts in near-field optical microscopy. J. Appl. Phys. . 1997;81(6):2492–2498. doi: 10.1063/1.363956. DOI
Apuzzo A., Février M., Salas-Montiel R., et al. Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide. Nano Lett. . 2013;13(3):1000–1006. doi: 10.1021/nl304164y. PubMed DOI
Tellez-Limon R., Blaize S., Gardillou F., Coello V., Salas-Montiel R. Excitation of surface plasmon polaritons in a gold nanoslab on ion-exchanged waveguide technology. Appl. Opt. . 2020;59(2):572. doi: 10.1364/AO.381915. PubMed DOI
Tellez-Limon R., Gardillou F., Coello V., Salas-Montiel R. Coupled localized surface plasmon resonances in periodic arrays of gold nanowires on ion-exchange waveguide technology. J. Opt. . 2021;23(2):025801. doi: 10.1088/2040-8986/abcfd5. DOI
Kihm H. W., Kim J., Koo S., et al. Optical magnetic field mapping using a subwavelength aperture. Opt. Express . 2013;21(5):5625. doi: 10.1364/OE.21.005625. PubMed DOI
Tortora P., Abashin M., Märki I., et al. Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 um by use of heterodyne scanning near-field optical microscopy. Opt. Lett. . 2005;30(21):2885. doi: 10.1364/OL.30.002885. PubMed DOI
Gersen H., van Dijk E. M. H. P., Korterik J. P., van Hulst N. F., Kuipers L. Phase mapping of ultrashort pulses in bimodal photonic structures: a window on local group velocity dispersion. Phys. Rev. E . 2004;70(6):066609. doi: 10.1103/PhysRevE.70.066609. PubMed DOI
Gersen H., Karle T. J., Engelen R. J. P., et al. Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides. Phys. Rev. Lett. . 2005;94(12):123901. doi: 10.1103/PhysRevLett.94.123901. PubMed DOI
Burresi M., Diessel D., van Oosten D., Linden S., Wegener M., Kuipers L. Negative-index metamaterials: looking into the unit cell. Nano Lett. 2010;10(7):2480–2483. doi: 10.1021/nl100943e. PubMed DOI
Nelson J. W., Knefelkamp G. R., Brolo A. G., Lindquist N. C. Digital plasmonic holography. Light Sci. Appl. . 2018;7(1):52. doi: 10.1038/s41377-018-0049-2. PubMed DOI PMC
Dvořák P., Kvapil M., Bouchal P., et al. Near-field digital holography: a tool for plasmon phase imaging. Nanoscale . 2018;10(45):21363–21368. doi: 10.1039/C8NR07438K. PubMed DOI
Garcia-Vidal F. J., Martin-Moreno L., Ebbesen T. W., Kuipers L. Light passing through subwavelength apertures. Rev. Mod. Phys. . 2010;82(1):729–787. doi: 10.1103/RevModPhys.82.729. DOI
Dvořák P., Édes Z., Kvapil M., et al. Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state. Opt. Express . 2017;25(14):16560. doi: 10.1364/OE.25.016560. PubMed DOI
Deans S. R. The Radon Transform and Some of its Applications . Mineola, New York: Dover Publications; 1993.
Liu Z., Durant S., Lee H., et al. Near-field Moiré effect mediated by surface plasmon polariton excitation. Opt. Lett. . 2007;32(6):629. doi: 10.1364/OL.32.000629. PubMed DOI
Yuan G., Wang Q., Yuan X. Dynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam. Opt. Lett. . 2012;37(13):2715. doi: 10.1364/OL.37.002715. PubMed DOI
Bliokh K. Y., Bekshaev A. Y., Nori F. Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett. . 2017;119(7):073901. doi: 10.1103/PhysRevLett.119.073901. PubMed DOI
Schnell M., Sarriugarte P., Neuman T., et al. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces. Nano Lett. . 2016;16(1):663–670. doi: 10.1021/acs.nanolett.5b04416. PubMed DOI
Valev V. K., Baumberg J. J., Sibilia C., Verbiest T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. . 2013;25(18):2517–2534. doi: 10.1002/adma.201205178. PubMed DOI
Zhou G. Analytical vectorial structure of Laguerre-Gaussian beam in the far field. Opt. Lett. . 2006;31(17):2616. doi: 10.1364/OL.31.002616. PubMed DOI
Faßbender A., Babocký J., Dvořák P., Křápek V., Linden S. Direct phase mapping of broadband Laguerre-Gaussian metasurfaces. APL Photonics . 2018;3(11):110803. doi: 10.1063/1.5049368. DOI
Takei N., Sommer C., Genes C., et al. Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas. Nat. Commun. . 2016;7(1):13449. doi: 10.1038/ncomms13449. PubMed DOI PMC
Hamedi H. R., Kudriašov V., Jia N., Qian J., Juzeliūnas G. Ferris wheel patterning of Rydberg atoms using electromagnetically induced transparency with optical vortex fields. Opt. Lett. . 2021;46(17):4204. doi: 10.1364/OL.427000. PubMed DOI
Vakulenko A., Kiriushechkina S., Wang M., et al. Near‐field characterization of higher‐order topological photonic states at optical frequencies. Adv. Mater. . 2021;33(18):2004376. doi: 10.1002/adma.202004376. PubMed DOI
Palik E. D. Handbook of Optical Constants of Solids . Vol. 1. San Diego: Elsevier; 1985.