Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30837653
PubMed Central
PMC6401004
DOI
10.1038/s41598-019-40441-9
PII: 10.1038/s41598-019-40441-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We present geometric-phase microscopy allowing a multipurpose quantitative phase imaging in which the ground-truth phase is restored by quantifying the phase retardance. The method uses broadband spatially incoherent light that is polarization sensitively controlled through the geometric (Pancharatnam-Berry) phase. The assessed retardance possibly originates either in dynamic or geometric phase and measurements are customized for quantitative mapping of isotropic and birefringent samples or multi-functional geometric-phase elements. The phase restoration is based on the self-interference of polarization distinguished waves carrying sample information and providing pure reference phase, while passing through an inherently stable common-path setup. The experimental configuration allows an instantaneous (single-shot) phase restoration with guaranteed subnanometer precision and excellent ground-truth accuracy (well below 5 nm). The optical performance is demonstrated in advanced yet routinely feasible noninvasive biophotonic imaging executed in the automated manner and predestined for supervised machine learning. The experiments demonstrate measurement of cell dry mass density, cell classification based on the morphological parameters and visualization of dynamic dry mass changes. The multipurpose use of the method was demonstrated by restoring variations in the dynamic phase originating from the electrically induced birefringence of liquid crystals and by mapping the geometric phase of a space-variant polarization directed lens.
Zobrazit více v PubMed
Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999;24:291. doi: 10.1364/OL.24.000291. PubMed DOI
Marquet P, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 2005;30:468. doi: 10.1364/OL.30.000468. PubMed DOI
de Groot P. Principles of interference microscopy for the measurement of surface topography. Adv. Opt. Photonics. 2015;7:1. doi: 10.1364/AOP.7.000001. DOI
Kim J, et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica. 2015;2:958. doi: 10.1364/OPTICA.2.000958. DOI
Escuti MJ, Kim J, Kudenov MW. Geometric-Phase Holograms. Opt. Photonics News. 2016;27:22–29. doi: 10.1364/OPN.27.2.000022. DOI
Lee Y-H, et al. Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage. 2017;3:79–88. doi: 10.1515/odps-2017-0010. DOI
Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat. Photonics. 2018;12:578–589. doi: 10.1038/s41566-018-0253-x. DOI
Marquet P, Depeursinge C, Magistretti PJ. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics. 2014;1:020901. doi: 10.1117/1.NPh.1.2.020901. PubMed DOI PMC
Majeed H, et al. Quantitative phase imaging for medical diagnosis. J. Biophotonics. 2017;10:177–205. doi: 10.1002/jbio.201600113. PubMed DOI
Slabý T, et al. Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope. Opt. Express. 2013;21:14747. doi: 10.1364/OE.21.014747. PubMed DOI
Cotte Y, et al. Marker-free phase nanoscopy. Nat. Photonics. 2013;7:113–117. doi: 10.1038/nphoton.2012.329. DOI
Kim T, et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics. 2014;8:256–263. doi: 10.1038/nphoton.2013.350. DOI
Paganin D, Nugent KA. Noninterferometric Phase Imaging with Partially Coherent Light. Phys. Rev. Lett. 1998;80:2586–2589. doi: 10.1103/PhysRevLett.80.2586. DOI
Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics. 2013;7:739–745. doi: 10.1038/nphoton.2013.187. PubMed DOI PMC
Pancharatnam S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. - Sect. A. 1956;44:247–262. doi: 10.1007/BF03046050. DOI
Berry MV. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. R. Soc. A Math. Phys. Eng. Sci. 1984;392:45–57. doi: 10.1098/rspa.1984.0023. DOI
Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 2002;27:1141. doi: 10.1364/OL.27.001141. PubMed DOI
Choi K, Yim J, Yoo S, Min S-W. Self-interference digital holography with a geometric-phase hologram lens. Opt. Lett. 2017;42:3940. doi: 10.1364/OL.42.003940. PubMed DOI
Choi K, Yim J, Min S-W. Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens. Opt. Express. 2018;26:16212. doi: 10.1364/OE.26.016212. PubMed DOI
Doelman DS, Fagginger Auer F, Escuti MJ, Snik F. Simultaneous phase and amplitude aberration sensing with a liquid-crystal vector-Zernike phase mask. Opt. Lett. 2019;44:17. doi: 10.1364/OL.44.000017. PubMed DOI
Bouchal P, Čelechovský R, Bouchal Z. Polarization sensitive phase-shifting Mirau interferometry using a liquid crystal variable retarder. Opt. Lett. 2015;40:4567–4570. doi: 10.1364/OL.40.004567. PubMed DOI
Leith EN, Upatnieks J. Holography with Achromatic-Fringe Systems. J. Opt. Soc. Am. 1967;57:975. doi: 10.1364/JOSA.57.000975. DOI
Leith EN, Swanson GJ. Achromatic interferometers for white light optical processing and holography. Appl. Opt. 1980;19:638. doi: 10.1364/AO.19.000638. PubMed DOI
Lee H-H, You J-H, Park S-H. Phase-shifting lateral shearing interferometer with two pairs of wedge plates. Opt. Lett. 2003;28:2243. doi: 10.1364/OL.28.002243. PubMed DOI
Bouchal, P. et al. High-Resolution Quantitative Phase Imaging of Plasmonic Metasurfaces with Sensitivity down to a Single Nanoantenna. Nano Lett. 19(2), 1242–1250, 10.1021/acs.nanolett.8b04776 (2019). PubMed
Choi Y, et al. Dynamic speckle illumination wide-field reflection phase microscopy. Opt. Lett. 2014;39:6062. doi: 10.1364/OL.39.006062. PubMed DOI PMC
Zikmund T, et al. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy. J. Microsc. 2014;256:117–125. doi: 10.1111/jmi.12165. PubMed DOI
Pastorek L, Venit T, Hozák P. Holography microscopy as an artifact-free alternative to phase-contrast. Histochem. Cell Biol. 2018;149:179–186. doi: 10.1007/s00418-017-1610-4. PubMed DOI
Strbkova L, Zicha D, Vesely P, Chmelik R. Automated classification of cell morphology by coherence-controlled holographic microscopy. J. Biomed. Opt. 2017;22:1. doi: 10.1117/1.JBO.22.8.086008. PubMed DOI
Davies HG, Wilkins MHF. Interference Microscopy and Mass Determination. Nature. 1952;169:541–541. doi: 10.1038/169541a0. PubMed DOI
Bouchal P, Chmelík R, Bouchal Z. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field. Opt. Lett. 2018;43:427–430. doi: 10.1364/OL.43.000427. PubMed DOI
Engström D, Persson M, Bengtsson J, Goksör M. Calibration of spatial light modulators suffering from spatially varying phase response. Opt. Express. 2013;21:16086. doi: 10.1364/OE.21.016086. PubMed DOI
Reichelt S. Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators. Appl. Opt. 2013;52:2610. doi: 10.1364/AO.52.002610. PubMed DOI
Aknoun S, Bon P, Savatier J, Wattellier B, Monneret S. Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry. Opt. Express. 2015;23:16383. doi: 10.1364/OE.23.016383. PubMed DOI
de Boer JF, Milner TE, van Gemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 1997;22:934. doi: 10.1364/OL.22.000934. PubMed DOI
Shin IH, Shin S-M, Kim DY. New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells. J. Biomed. Opt. 2010;15:016028. doi: 10.1117/1.3327280. PubMed DOI
Haward SJ, McKinley GH, Shen AQ. Elastic instabilities in planar elongational flow of monodisperse polymer solutions. Sci. Rep. 2016;6:33029. doi: 10.1038/srep33029. PubMed DOI PMC
Haward SJ, Oliveira MSN, Alves MA, McKinley GH. Optimized Cross-Slot Flow Geometry for Microfluidic Extensional Rheometry. Phys. Rev. Lett. 2012;109:128301. doi: 10.1103/PhysRevLett.109.128301. PubMed DOI
Sugimura K, Lenne P-F, Graner F. Measuring forces and stresses in situ in living tissues. Development. 2016;143:186–196. doi: 10.1242/dev.119776. PubMed DOI
McCann S, Sato Y, Ogawa T, Tummala RR, Sitaraman SK. Use of Birefringence to Determine Redistribution Layer Stresses to Create Design Guidelines to Prevent Glass Cracking. IEEE Trans. Device Mater. Reliab. 2017;17:585–592. doi: 10.1109/TDMR.2017.2738625. DOI
Hsiao H-H, Chu CH, Tsai DP. Fundamentals and Applications of Metasurfaces. Small Methods. 2017;1:1600064. doi: 10.1002/smtd.201600064. DOI
Born, M., Wolf, E. & Bhatia, A. B. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Cambridge University Press, 2000).
Mahajan VN. Axial irradiance and optimum focusing of laser beams. Appl. Opt. 1983;22:3042. doi: 10.1364/AO.22.003042. PubMed DOI
Běhal J, Bouchal Z. Optimizing three-dimensional point spread function in lensless holographic microscopy. Opt. Express. 2017;25:29026. doi: 10.1364/OE.25.029026. DOI
Popescu G, Ikeda T, Dasari RR, Feld MS. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 2006;31:775. doi: 10.1364/OL.31.000775. PubMed DOI
Ding H, Popescu G. Diffraction phase contrast microscopy. Opt. Express. 2010;18:1569. doi: 10.1364/OE.18.001569. PubMed DOI
Bhaduri B, Pham H, Mir M, Popescu G. Diffraction phase microscopy with white light. Opt. Lett. 2012;37:1094. doi: 10.1364/OL.37.001094. PubMed DOI
Wang Z, et al. Spatial light interference microscopy (SLIM) Opt. Express. 2011;19:1016. doi: 10.1364/OE.19.001016. PubMed DOI PMC
Li Y, Fanous MJ, Kilian KA, Popescu G. Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci. Rep. 2019;9:248. doi: 10.1038/s41598-018-36551-5. PubMed DOI PMC
Lee K, Park Y. Quantitative phase imaging unit. Opt. Lett. 2014;39:3630. doi: 10.1364/OL.39.003630. PubMed DOI
Baek Y, Lee K, Yoon J, Kim K, Park Y. White-light quantitative phase imaging unit. Opt. Express. 2016;24:9308. doi: 10.1364/OE.24.009308. PubMed DOI
Popescu G, et al. Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 2004;29:2503. doi: 10.1364/OL.29.002503. PubMed DOI
Copeland CR, et al. Subnanometer localization accuracy in widefield optical microscopy. Light Sci. Appl. 2018;7:31. doi: 10.1038/s41377-018-0031-z. PubMed DOI PMC
Kolman P, Chmelík R. Coherence-controlled holographic microscope. Opt. Express. 2010;18:21990. doi: 10.1364/OE.18.021990. PubMed DOI
Lošt’ák M, Chmelík R, Slabá M, Slabý T. Coherence-controlled holographic microscopy in diffuse media. Opt. Express. 2014;22:4180. doi: 10.1364/OE.22.004180. PubMed DOI
Tolde O, et al. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC
Choi Y, et al. Reflection phase microscopy using spatio-temporal coherence of light. Optica. 2018;5:1468. doi: 10.1364/OPTICA.5.001468. PubMed DOI PMC
Lee K, et al. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications. Sensors. 2013;13:4170–4191. doi: 10.3390/s130404170. PubMed DOI PMC
Kühn J, et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Opt. Express. 2007;15:7231. doi: 10.1364/OE.15.007231. PubMed DOI
Shaked NT, Rinehart MT, Wax A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt. Lett. 2009;34:767. doi: 10.1364/OL.34.000767. PubMed DOI PMC