Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples

. 2019 Mar 05 ; 9 (1) : 3608. [epub] 20190305

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30837653
Odkazy

PubMed 30837653
PubMed Central PMC6401004
DOI 10.1038/s41598-019-40441-9
PII: 10.1038/s41598-019-40441-9
Knihovny.cz E-zdroje

We present geometric-phase microscopy allowing a multipurpose quantitative phase imaging in which the ground-truth phase is restored by quantifying the phase retardance. The method uses broadband spatially incoherent light that is polarization sensitively controlled through the geometric (Pancharatnam-Berry) phase. The assessed retardance possibly originates either in dynamic or geometric phase and measurements are customized for quantitative mapping of isotropic and birefringent samples or multi-functional geometric-phase elements. The phase restoration is based on the self-interference of polarization distinguished waves carrying sample information and providing pure reference phase, while passing through an inherently stable common-path setup. The experimental configuration allows an instantaneous (single-shot) phase restoration with guaranteed subnanometer precision and excellent ground-truth accuracy (well below 5 nm). The optical performance is demonstrated in advanced yet routinely feasible noninvasive biophotonic imaging executed in the automated manner and predestined for supervised machine learning. The experiments demonstrate measurement of cell dry mass density, cell classification based on the morphological parameters and visualization of dynamic dry mass changes. The multipurpose use of the method was demonstrated by restoring variations in the dynamic phase originating from the electrically induced birefringence of liquid crystals and by mapping the geometric phase of a space-variant polarization directed lens.

Zobrazit více v PubMed

Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999;24:291. doi: 10.1364/OL.24.000291. PubMed DOI

Marquet P, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 2005;30:468. doi: 10.1364/OL.30.000468. PubMed DOI

de Groot P. Principles of interference microscopy for the measurement of surface topography. Adv. Opt. Photonics. 2015;7:1. doi: 10.1364/AOP.7.000001. DOI

Kim J, et al. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica. 2015;2:958. doi: 10.1364/OPTICA.2.000958. DOI

Escuti MJ, Kim J, Kudenov MW. Geometric-Phase Holograms. Opt. Photonics News. 2016;27:22–29. doi: 10.1364/OPN.27.2.000022. DOI

Lee Y-H, et al. Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage. 2017;3:79–88. doi: 10.1515/odps-2017-0010. DOI

Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat. Photonics. 2018;12:578–589. doi: 10.1038/s41566-018-0253-x. DOI

Marquet P, Depeursinge C, Magistretti PJ. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics. 2014;1:020901. doi: 10.1117/1.NPh.1.2.020901. PubMed DOI PMC

Majeed H, et al. Quantitative phase imaging for medical diagnosis. J. Biophotonics. 2017;10:177–205. doi: 10.1002/jbio.201600113. PubMed DOI

Slabý T, et al. Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope. Opt. Express. 2013;21:14747. doi: 10.1364/OE.21.014747. PubMed DOI

Cotte Y, et al. Marker-free phase nanoscopy. Nat. Photonics. 2013;7:113–117. doi: 10.1038/nphoton.2012.329. DOI

Kim T, et al. White-light diffraction tomography of unlabelled live cells. Nat. Photonics. 2014;8:256–263. doi: 10.1038/nphoton.2013.350. DOI

Paganin D, Nugent KA. Noninterferometric Phase Imaging with Partially Coherent Light. Phys. Rev. Lett. 1998;80:2586–2589. doi: 10.1103/PhysRevLett.80.2586. DOI

Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics. 2013;7:739–745. doi: 10.1038/nphoton.2013.187. PubMed DOI PMC

Pancharatnam S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. - Sect. A. 1956;44:247–262. doi: 10.1007/BF03046050. DOI

Berry MV. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. R. Soc. A Math. Phys. Eng. Sci. 1984;392:45–57. doi: 10.1098/rspa.1984.0023. DOI

Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 2002;27:1141. doi: 10.1364/OL.27.001141. PubMed DOI

Choi K, Yim J, Yoo S, Min S-W. Self-interference digital holography with a geometric-phase hologram lens. Opt. Lett. 2017;42:3940. doi: 10.1364/OL.42.003940. PubMed DOI

Choi K, Yim J, Min S-W. Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens. Opt. Express. 2018;26:16212. doi: 10.1364/OE.26.016212. PubMed DOI

Doelman DS, Fagginger Auer F, Escuti MJ, Snik F. Simultaneous phase and amplitude aberration sensing with a liquid-crystal vector-Zernike phase mask. Opt. Lett. 2019;44:17. doi: 10.1364/OL.44.000017. PubMed DOI

Bouchal P, Čelechovský R, Bouchal Z. Polarization sensitive phase-shifting Mirau interferometry using a liquid crystal variable retarder. Opt. Lett. 2015;40:4567–4570. doi: 10.1364/OL.40.004567. PubMed DOI

Leith EN, Upatnieks J. Holography with Achromatic-Fringe Systems. J. Opt. Soc. Am. 1967;57:975. doi: 10.1364/JOSA.57.000975. DOI

Leith EN, Swanson GJ. Achromatic interferometers for white light optical processing and holography. Appl. Opt. 1980;19:638. doi: 10.1364/AO.19.000638. PubMed DOI

Lee H-H, You J-H, Park S-H. Phase-shifting lateral shearing interferometer with two pairs of wedge plates. Opt. Lett. 2003;28:2243. doi: 10.1364/OL.28.002243. PubMed DOI

Bouchal, P. et al. High-Resolution Quantitative Phase Imaging of Plasmonic Metasurfaces with Sensitivity down to a Single Nanoantenna. Nano Lett. 19(2), 1242–1250, 10.1021/acs.nanolett.8b04776 (2019). PubMed

Choi Y, et al. Dynamic speckle illumination wide-field reflection phase microscopy. Opt. Lett. 2014;39:6062. doi: 10.1364/OL.39.006062. PubMed DOI PMC

Zikmund T, et al. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy. J. Microsc. 2014;256:117–125. doi: 10.1111/jmi.12165. PubMed DOI

Pastorek L, Venit T, Hozák P. Holography microscopy as an artifact-free alternative to phase-contrast. Histochem. Cell Biol. 2018;149:179–186. doi: 10.1007/s00418-017-1610-4. PubMed DOI

Strbkova L, Zicha D, Vesely P, Chmelik R. Automated classification of cell morphology by coherence-controlled holographic microscopy. J. Biomed. Opt. 2017;22:1. doi: 10.1117/1.JBO.22.8.086008. PubMed DOI

Davies HG, Wilkins MHF. Interference Microscopy and Mass Determination. Nature. 1952;169:541–541. doi: 10.1038/169541a0. PubMed DOI

Bouchal P, Chmelík R, Bouchal Z. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field. Opt. Lett. 2018;43:427–430. doi: 10.1364/OL.43.000427. PubMed DOI

Engström D, Persson M, Bengtsson J, Goksör M. Calibration of spatial light modulators suffering from spatially varying phase response. Opt. Express. 2013;21:16086. doi: 10.1364/OE.21.016086. PubMed DOI

Reichelt S. Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators. Appl. Opt. 2013;52:2610. doi: 10.1364/AO.52.002610. PubMed DOI

Aknoun S, Bon P, Savatier J, Wattellier B, Monneret S. Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry. Opt. Express. 2015;23:16383. doi: 10.1364/OE.23.016383. PubMed DOI

de Boer JF, Milner TE, van Gemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 1997;22:934. doi: 10.1364/OL.22.000934. PubMed DOI

Shin IH, Shin S-M, Kim DY. New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells. J. Biomed. Opt. 2010;15:016028. doi: 10.1117/1.3327280. PubMed DOI

Haward SJ, McKinley GH, Shen AQ. Elastic instabilities in planar elongational flow of monodisperse polymer solutions. Sci. Rep. 2016;6:33029. doi: 10.1038/srep33029. PubMed DOI PMC

Haward SJ, Oliveira MSN, Alves MA, McKinley GH. Optimized Cross-Slot Flow Geometry for Microfluidic Extensional Rheometry. Phys. Rev. Lett. 2012;109:128301. doi: 10.1103/PhysRevLett.109.128301. PubMed DOI

Sugimura K, Lenne P-F, Graner F. Measuring forces and stresses in situ in living tissues. Development. 2016;143:186–196. doi: 10.1242/dev.119776. PubMed DOI

McCann S, Sato Y, Ogawa T, Tummala RR, Sitaraman SK. Use of Birefringence to Determine Redistribution Layer Stresses to Create Design Guidelines to Prevent Glass Cracking. IEEE Trans. Device Mater. Reliab. 2017;17:585–592. doi: 10.1109/TDMR.2017.2738625. DOI

Hsiao H-H, Chu CH, Tsai DP. Fundamentals and Applications of Metasurfaces. Small Methods. 2017;1:1600064. doi: 10.1002/smtd.201600064. DOI

Born, M., Wolf, E. & Bhatia, A. B. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Cambridge University Press, 2000).

Mahajan VN. Axial irradiance and optimum focusing of laser beams. Appl. Opt. 1983;22:3042. doi: 10.1364/AO.22.003042. PubMed DOI

Běhal J, Bouchal Z. Optimizing three-dimensional point spread function in lensless holographic microscopy. Opt. Express. 2017;25:29026. doi: 10.1364/OE.25.029026. DOI

Popescu G, Ikeda T, Dasari RR, Feld MS. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 2006;31:775. doi: 10.1364/OL.31.000775. PubMed DOI

Ding H, Popescu G. Diffraction phase contrast microscopy. Opt. Express. 2010;18:1569. doi: 10.1364/OE.18.001569. PubMed DOI

Bhaduri B, Pham H, Mir M, Popescu G. Diffraction phase microscopy with white light. Opt. Lett. 2012;37:1094. doi: 10.1364/OL.37.001094. PubMed DOI

Wang Z, et al. Spatial light interference microscopy (SLIM) Opt. Express. 2011;19:1016. doi: 10.1364/OE.19.001016. PubMed DOI PMC

Li Y, Fanous MJ, Kilian KA, Popescu G. Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci. Rep. 2019;9:248. doi: 10.1038/s41598-018-36551-5. PubMed DOI PMC

Lee K, Park Y. Quantitative phase imaging unit. Opt. Lett. 2014;39:3630. doi: 10.1364/OL.39.003630. PubMed DOI

Baek Y, Lee K, Yoon J, Kim K, Park Y. White-light quantitative phase imaging unit. Opt. Express. 2016;24:9308. doi: 10.1364/OE.24.009308. PubMed DOI

Popescu G, et al. Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 2004;29:2503. doi: 10.1364/OL.29.002503. PubMed DOI

Copeland CR, et al. Subnanometer localization accuracy in widefield optical microscopy. Light Sci. Appl. 2018;7:31. doi: 10.1038/s41377-018-0031-z. PubMed DOI PMC

Kolman P, Chmelík R. Coherence-controlled holographic microscope. Opt. Express. 2010;18:21990. doi: 10.1364/OE.18.021990. PubMed DOI

Lošt’ák M, Chmelík R, Slabá M, Slabý T. Coherence-controlled holographic microscopy in diffuse media. Opt. Express. 2014;22:4180. doi: 10.1364/OE.22.004180. PubMed DOI

Tolde O, et al. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC

Choi Y, et al. Reflection phase microscopy using spatio-temporal coherence of light. Optica. 2018;5:1468. doi: 10.1364/OPTICA.5.001468. PubMed DOI PMC

Lee K, et al. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications. Sensors. 2013;13:4170–4191. doi: 10.3390/s130404170. PubMed DOI PMC

Kühn J, et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Opt. Express. 2007;15:7231. doi: 10.1364/OE.15.007231. PubMed DOI

Shaked NT, Rinehart MT, Wax A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt. Lett. 2009;34:767. doi: 10.1364/OL.34.000767. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Two-dimensional quantitative near-field phase imaging using square and hexagonal interference devices

. 2022 Sep ; 11 (19) : 4375-4386. [epub] 20220826

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...