Continuous Operators from Spaces of Lipschitz Functions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39635116
PubMed Central
PMC11611977
DOI
10.1007/s00025-024-02323-z
PII: 2323
Knihovny.cz E-zdroje
- Klíčová slova
- Grothendieck spaces, Lipschitz-free spaces, Spaces of Lipschitz functions, continuous operators, continuous surjections, density, weak topologies,
- Publikační typ
- časopisecké články MeSH
We study the existence of continuous (linear) operators from the Banach spaces Lip 0 ( M ) of Lipschitz functions on infinite metric spaces M vanishing at a distinguished point and from their predual spaces F ( M ) onto certain Banach spaces, including C(K)-spaces and the spaces c 0 and ℓ 1 . For pairs of spaces Lip 0 ( M ) and C(K) we prove that if they are endowed with topologies weaker than the norm topology, then usually no continuous (linear or not) surjection exists between those spaces. It is also showed that if a metric space M contains a bilipschitz copy of the unit sphere S c 0 of the space c 0 , then Lip 0 ( M ) admits a continuous operator onto ℓ 1 and hence onto c 0 . Using this, we provide several conditions for a space M implying that Lip 0 ( M ) is not a Grothendieck space. Finally, we obtain a new characterization of the Schur property for Lipschitz-free spaces: a space F ( M ) has the Schur property if and only if for every complete discrete metric space N with cardinality d(M) the spaces F ( M ) and F ( N ) are weakly sequentially homeomorphic.
Department of Mathematics Kurt Gödel Research Center University of Vienna Vienna Austria
Department of Mathematics Universität Innsbruck Innsbruck Austria
Faculty of Mathematics and Computer Science Adam Mickiewicz University Poznan Poland
Institute of Mathematics Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Albiac, F., Kalton, N.J.: Topics in Banach space theory, 2nd edn. Springer, Switzerland (2016)
Aliaga, R.J., Noûs, C., Petitjean, C., Procházka, A.: Compact reduction in Lipschitz-free spaces. Stud. Math. 260, 341–359 (2021)
Aliaga, R.J., Gartland, C., Petitjean, C., Procházka, A.: Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions. Trans. Amer. Math. Soc. 375, 3529–3567 (2022)
Arkhangel’ski, A.V.: Topological function spaces. Kluwer, Dordrecht (1992)
Banakh, T.: On topological classification of normed spaces endowed with the weak topology of the topology of compact convergence. In: Banakh T. (ed.), General Topology in Banach Spaces, pp. 171–178. Nova Science Publishers, (2001). arXiv:1908.09115v1
Banakh, T., Gabriyelyan, S.: On the [Image: see text]-stable closure of the class of (separable) metrizable spaces. Monatsh. Math. 180, 39–64 (2016)
Banakh, T., Kakol, J., Śliwa, W.: Josefson–Nissenzweig property for [Image: see text]-spaces. Rev. R. Acad. Cienc. Exactas Fís Nat. Ser. A Mat. RACSAM 113, 3015–3030 (2019)
Benyamini, Y., Lindenstrauss, J.: A predual of [Image: see text] which is not isomorphic to a [Image: see text] space. Isr. J. Math. 13, 246–254 (1972)
Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis, vol. 1. American Mathematical Society, Providence (2000)
Benyamini, Y., Sternfeld, Y.: Spheres in infinite-dimensional normed spaces are Lipschitz contractible. Proc. Amer. Math. Soc. 88, 439–445 (1983)
Bourgain, J.: [Image: see text] is a Grothendieck space. Stud. Math. 75, 193–216 (1983)
Calbrix, J.: Espaces [Image: see text] et espaces des applications continues. Bull. Soc. Math. France 113(2), 183–203 (1985)
Candido, L., Cúth, M., Vejnar, B.: On the weak* separability of the space of Lipschitz functions, preprint (2024), arXiv:2406.03982
Candido, L., Guzmán, H.: On large [Image: see text]-sums of Lipschitz-free spaces and applications. Proc. Amer. Math. Soc. 151, 1135–1145 (2023)
Candido, L., Kaufmann, P.L.: On Lipschitz-free spaces over spheres of Banach spaces. J. Math. Anal. Appl. 500, 125093 (2021)
Candido, L., Cúth, M., Doucha, M.: Isomorphisms between spaces of Lipschitz functions. J. Funct. Anal. 277, 2697–2727 (2019)
Cembranos, P.: [Image: see text] contains a complemented copy of [Image: see text]. Proc. Amer. Math. Soc. 91, 556–558 (1984)
Cobzaş, Ş, Miculescu, R., Nicolae, A.: Lipschitz Functions. Lecture Notes in Mathematics, vol. 2241. Springer, Cham (2019)
Corson, H.H.: The weak topology of a Banach space. Trans. Amer. Math. Soc. 101, 1–15 (1961)
Cúth, M., Doucha, M.: Lipschitz-free spaces over ultrametric spaces. Mediterr. J. Math. 13, 1893–1906 (2016)
Cúth, M., Doucha, M., Wojtaszczyk, P.: On the structure of Lipschitz-free spaces. Proc. Amer. Math. Soc. 144, 3833–3846 (2016)
Cúth, M., Kalenda, O.F.K., Ondřej, Kaplický, P.: Finitely additive measures and complementability of Lipschitz-free spaces, Israel. J. Math. 230, 409–442 (2019)
Dales, H.G., Dashiell, F.K., Jr., Lau, A.T.-M., Strauss, D.: Banach Spaces of Continuous Functions as Dual Spaces. Springer, Cham (2016)
Dalet, A.: Étude des espaces Lipschitz-libres. In: PhD thesis, Université de Franche-Comté–Besançon (2015)
Engelking, R.: Dimension Theory. North-Holland, Amsterdam-Oxford-New York, Warsaw (1978)
Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. Springer, New York (2010)
Ferrando, J.C.: Copies of [Image: see text] in certain vector-valued function Banach spaces. Math. Scand. 77(1), 148–152 (1995)
Gabriyelyan, S., Ka̧kol, J., Kubiś, W., Marciszewski, W.: Networks for the weak topology of Banach spaces and Fréchet spaces. J. Math. Anal. Appl. 432, 1183–1199 (2015)
Gabriyelyan, S., Grebik, J., Ka̧kol, J., Zdomskyy, L.: The Ascoli property for function spaces. Topol. Appl. 214, 35–50 (2016)
Gabriyelyan, S., Ka̧kol, J., Plebanek, G.: The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces. Stud. Math. 233, 119–139 (2016)
Godefroy, G., Kalton, N.J.: Lipschitz-free Banach spaces. Stud. Math. 159, 121–141 (2003)
González, M., Kania, T.: Grothendieck spaces: the landscape and perspectives. Jpn. J. Math. 16, 247–313 (2021)
Grothendieck, A.: Critères de compacité dans les espaces fonctionnels generaux. Am. J. Math. 74, 168–186 (1952)
Grothendieck, A.: Sur les applications linéaires faiblement compactes d’espaces du type [Image: see text]. Can. J. Math. 5, 129–173 (1953)
Guillermo, M.M., Ferrando, J.C., López-Pellicer, M.: The density character of the space [Image: see text]. In: Ferrando, J.C., López-Pellicer, M. (eds.) Descriptive Topology and Functional Analysis, Springer Proceedings in Mathematics and Statistics, vol. 80, pp. 18. (2014)
Hájek, P., Novotný, M.: Some remarks on the structure of Lipschitz-free spaces. Bull. Belg. Math. Soc. Simon Stevin 24, 283–304 (2016)
Hájek, P., Montesinos Santalucía, V., Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces. Springer, New York (2008)
Harmand, P., Werner, D., Werner, W.: M-Ideals in Banach Spaces and Banach Algebras. Springer, Berlin, Heidelberg (1993)
Herman, R., Whitley, R.: An example concerning reflexivity. Stud. Math. 28(3), 289–294 (1967)
Hodel, R.: Cardinal functions. I. In: Handbook of Set-Theoretic Topology, pp. 1–61. North-Holland, Amsterdam (1984)
Johnson, W.B.: A complementably universal conjugate Banach space and its relation to the approximation problem. Isr. J. Math. 13(3–4), 301–310 (1972)
Johnson, W.B., Zippin, M.: Separable [Image: see text]-preduals are quotients of [Image: see text]. Isr. J. Math. 16, 198–202 (1973)
Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, I. In: Pure and Applied Math. vol. 100, Academic Press, New York (1983)
Ka̧kol, J., Moltó, A., Śliwa, W.: On subspaces of spaces [Image: see text] isomorphic to spaces [Image: see text] and [Image: see text] with the topology induced from [Image: see text]. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 154 (2023)
Ka̧kol, J., Marciszewski, W., Sobota, D., Zdomskyy, L.: On complemented copies of the space [Image: see text] in spaces [Image: see text]. Isr. J. Math. 250, 139–177 (2022)
Ka̧kol, J., Sobota, D., Zdomskyy, L.: Grothendieck [Image: see text]-spaces and the Josefson–Nissenzweig theorem. Fund. Math. 263(2), 105–131 (2023)
Ka̧kol, J., Sobota, D., Zdomskyy, L.: On complementability of [Image: see text] in spaces [Image: see text]. Proc. Amer. Math. Soc. 152(9), 3777–3784 (2024)
Kaufmann, P.L.: Products of Lipschitz-free spaces and applications. Stud. Math. 226, 213–227 (2015)
Krupski, M.: On the weak and pointwise topologies in function spaces. Rev. R. Acad. Cienc. Exactas Fís Nat. Ser. A Math. RACSAM 110, 557–563 (2016)
Krupski, M., Marciszewski, W.: On the weak and pointwise topologies on function spaces II. J. Math. Anal. Appl. 452, 646–658 (2017)
Kunen, K.: Set theory. An Introduction to Independence Proofs. North-Holland Publishing Company, Amsterdam (1980)
Lindenstrauss, J.: On nonlinear projections in Banach spaces. Michi. Math. J. 11, 263–287 (1964)
Lindenstrauss, J.: On James’s paper “Separable conjugate spaces’’. Isr. J. Math. 9, 279–284 (1971)
Michael, E.: [Image: see text]-spaces. J. Math. Mech. 15, 983–1002 (1966)
Noble, N.: The density character of function spaces. Proc. Amer. Math. Soc. 42(1), 228–233 (1971)
Pfitzner, H.: Weak compactness in the dual of a C*-algebra is determined commutatively. Math. Ann. 298, 349–371 (1994)
Räbiger, F.: Beiträge zur Strukturtheorie der Grothendieck-Räume, Sitzungsber. Heidelb. Akad. Wiss. Math.–Natur. Kl. vol. 85, Springer-Verlag (1985)
Raynaud, Y.: Espaces de Banach superstables, distances stables et homéomorphismes uniformes. Isr. J. Math. 44, 33–52 (1983)
Robertson, A.P., Robertson, W.J.: Topological vector spaces, Cambridge Tracts in Mathematics 53. Cambridge University Press, Cambridge (1964)
Rosenthal, H.P.: On injective Banach spaces and the spaces [Image: see text] for finite measure [Image: see text]. Acta Math. 124, 205–248 (1970)
Sakai, S.: C*-Algebras and W*-Algebras. Springer-Verlag, Berlin, Heidelberg, New York (1971)
Schachermayer, W.: On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Rozpr. Math. 214, 34 (1982)
Schlüchtermann, G., Wheeler, R.: The Mackey dual of a Banach space. Note Mat. 11, 273–287 (1991)
Tkachuk, V.V.: A [Image: see text]-theory problem book. Topological and function spaces, vol. 1, Springer, New York (2011)
Toruńczyk, H.: Characterizing Hilbert space topology. Fund. Math. 111, 247–262 (1981)
Weaver, N.: Lipschitz Algebras. World Scientific Publishing Co. Pte. Ltd., Hackensack (2018)
Willard, S.: General Topology. Addison-Wesley, Reading (1970)