An open Internet of Things (IoT)-based framework for feedback control of photosynthetic activities

. 2022 ; 60 (1) : 79-87. [epub] 20220120

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649005

Active control of photosynthetic activities is important in plant physiological study. Although models of plant photosynthesis have been built at different scales, they have not been fully examined for their application in plant growth control. However, we do not have an infrastructure to support such experiments since current plant growth chambers usually use fixed control protocols. In our current paper, an open IoT-based framework is proposed. This framework allows a plant scientist or agricultural engineer, through an application programming interface (API), in a desirable programming language, (1) to gather environmental data and plant physiological responses; (2) to program and execute control algorithms based on their models, and then (3) to implement real-time commands to control environmental factors. A plant growth chamber was developed to demonstrate the concept of the proposed open framework.

Zobrazit více v PubMed

Astill J., Dara R.A., Fraser E.D.G. et al.: Smart poultry management: Smart sensors, big data, and the internet of things. – Comput. Electron. Agr. 170: 105291, 2020. https://www.sciencedirect.com/science/article/abs/pii/S0168169918316363?via%3Dihub

Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. https://www.annualreviews.org/doi/10.1146/annurev.arplant.59.032607.092759 PubMed DOI

Balaji G.N., Nandhini V., Mithra S. et al.: Iot based smart crop monitoring in farm land. – Imp. J. Interdiscip. Res. 4: 88-92, 2018. https://www.researchgate.net/publication/322508245_IOT_Based_Smart_Crop_Monitoring_in_Farm_Land

Barber J., Andersson B.: Too much of a good thing: light can be bad for photosynthesis. – Trends Biochem. Sci. 17: 61-66, 1992. https://www.sciencedirect.com/science/article/pii/0968000492905032?via%3Dihub PubMed

Bermudez I., Traverso S., Mellia M., Munafò M.: Exploring the cloud from passive measurements: The Amazon AWS case. – In: 2013 Proceedings IEEE INFOCOM. Pp. 230-234. IEEE, Turin: 2013.

Bulthuis D.A.: Effects of temperature on photosynthesis and growth of seagrasses. – Aquat. Bot. 27: 27-40, 1987. https://www.sciencedirect.com/science/article/pii/0304377087900842?via%3Dihub

Campani G., Ribeiro M.P.A., Zangirolami T.C., Lima F.V.: A hierarchical state estimation and control framework for monitoring and dissolved oxygen regulation in bioprocesses. – Bioprocess Biosyst. Eng. 42: 1467-1481, 2019. https://link.springer.com/article/10.1007%2Fs00449-019-02143-4 PubMed

Chang T.G., Zhu X.G.: Source–sink interaction: a century old concept under the light of modern molecular systems biology. – J. Exp. Bot. 68: 4417-4431, 2017. PubMed

Christensen A.J., Srinivasan V., Hart J.C. et al.: Use of computational modeling combined with advanced visualization to develop strategies for the design of crop ideotypes to address food security. – Nutr. Rev. 76: 332-347, 2018. https://academic.oup.com/nutritionreviews/article/76/5/332/4942300 PubMed PMC

Dietz K.-J., Schreiber U., Heber U.: The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes. – Planta 166: 219-226, 1985. https://link.springer.com/article/10.1007/BF00397352 PubMed DOI

Dinar A., Tieu A., Huynh H.: Water scarcity impacts on global food production. – Glob. Food Secur. 23: 212-226, 2019. https://www.sciencedirect.com/science/article/pii/S2211912417301220?via%3Dihub

Feng S., Fu L., Xia Q. et al.: Modelling and simulation of photosystem II chlorophyll fluorescence transition from dark-adapted state to light-adapted state. – IET Syst. Biol. 12: 289-293, 2018. PubMed PMC

Fernandez-Jaramillo A.A., Duarte-Galvan C., Contreras-Medina L.M. et al.: Instrumentation in developing chlorophyll fluorescence biosensing: A review. – Sensors-Basel 12: 11853-11869, 2012. https://www.mdpi.com/1424-8220/12/9/11853/htm PubMed PMC

Fu L., Govindjee G., Tan J., Guo Y.: Development of a minimized model structure and a feedback control framework for regulating photosynthetic activities. – Photosynth. Res. 146: 213-225, 2020. https://link.springer.com/article/10.1007%2Fs11120-019-00690-1 PubMed

Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. https://www.sciencedirect.com/science/article/pii/S0304416589800169?via%3Dihub

Govindjee G., Amesz J., Fork D.C.: Light Emission by Plants and Bacteria. Pp. 638. Academic Press, Orlando: 1986. https://www.sciencedirect.com/book/9780122943102/light-emission-by-plants-and-bacteria

Guarini J.-M., Moritz C.: Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during rapid light curve experiments. – Photosynthetica 47: 206-214, 2009. https://ps.ueb.cas.cz/artkey/phs-200902-0006_modelling-the-dynamics-of-the-electron-transport-rate-measured-by-pam-fluorimetry-during-rapid-light-curve-expe.php

Guo Y., Tan J.: Modeling and simulation of the initial phases of chlorophyll fluorescence from Photosystem II. – BioSystems 103: 152-157, 2011. https://www.sciencedirect.com/science/article/pii/S0303264710001826?via%3Dihub PubMed

Hemming S., de Zwart F., Elings A. et al.: Remote control of greenhouse vegetable production with artificial intelligence – greenhouse climate, irrigation, and crop production. – Sensors-Basel 19: 1807, 2019. https://www.mdpi.com/1424-8220/19/8/1807 PubMed PMC

Iersel M.W., Mattos E., Weaver G. et al.: Using chlorophyll fluorescence to control lighting in controlled environment agriculture. – Acta Hortic. 1134: 427-434, 2016a. https://www.actahort.org/books/1134/1134_54.htm

Iersel M.W., Weaver G., Martin M.T. et al.: A chlorophyll fluorescence-based biofeedback system to control photosynthetic lighting in controlled environment agriculture. – J. Am. Soc. Hortic. Sci. 141: 169-176, 2016b. https://journals.ashs.org/jashs/view/journals/jashs/141/2/article-p169.xml

Juhasova B., Juhas M., Halenar I.: TCP/IP protocol utilisation in process of dynamic control of robotic cell according industry 4.0 concept. – In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics. Pp. 000217-000222. SAMI, 2017. https://ieeexplore.ieee.org/document/7880306

Kannan K., Wang Y., Lang M. et al.: Combining gene network, metabolic and leaf-level models show means to future-proof soybean photosynthesis under rising CO2. – in silico Plants 1: diz008, 2019. https://academic.oup.com/insilicoplants/article/1/1/diz008/5521999

Kennedy D., Norman C.: What don’t we know? – Science 309: 75, 2005. https://www.science.org/doi/10.1126/science.309.5731.75 PubMed DOI

Kim J.Y.: Roadmap to high throughput phenotyping for plant breeding. – J. Biosyst. Eng. 45: 43-55, 2020. https://link.springer.com/article/10.1007/s42853-020-00043-0 DOI

Kramer P.J.: Carbon dioxide concentration, photosynthesis, and dry matter production. – BioScience 31: 29-33, 1981. https://academic.oup.com/bioscience/article-abstract/31/1/29/228480?redirectedFrom=fulltext

Light R.A.: Mosquitto: server and client implementation of the MQTT protocol. – J. Open Source Softw. 2: 265, 2017. https://joss.theoj.org/papers/10.21105/joss.00265 DOI

Long S.P., Marshall-Colon A., Zhu X.G.: Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. – Cell 161: 56-66, 2015. https://www.sciencedirect.com/science/article/pii/S0092867415003062?via%3Dihub PubMed

Mahmoud R., Yousuf T., Aloul F., Zualkernan I.: Internet of things (IoT) security: Current status, challenges and prospective measures. – In: 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST). Pp. 336-341. IEEE, London: 2015.

Malik A.W., Rahman A.U., Qayyum T., Ravana S.D.: Leveraging fog computing for sustainable smart farming using distributed simulation. – IEEE Internet Things J. 7: 3300-3309, 2020. https://ieeexplore.ieee.org/document/8962317

Marshall-Colon A., Long S.P., Allen D.K. et al.: Crops in silico: generating virtual crops using an integrative and multi-scale modeling platform. – Front. Plant Sci. 8: 786, 2017. https://www.frontiersin.org/articles/10.3389/fpls.2017.00786/full PubMed DOI PMC

Padhi B., Chauhan G., Kandoi D. et al.: A comparison of chlorophyll fluorescence transient measurements, using Handy PEA and FluorPen fluorometers. – Photosynthetica 59: 399-408, 2021. https://ps.ueb.cas.cz/artkey/phs-202103-0004_a-comparison-of-chlorophyll-fluorescence-transient-measurements-using-handy-pea-and-fluorpen-fluorometers.php

Pasha S.: ThingSpeak based sensing and monitoring system for IoT with Matlab analysis. – Int. J. New Technol. Res. 2: 19-23, 2016.

Pommier C., Cornut G., Letellier T. et al.: Data standards for plant phenotyping: MIAPPE and its implementations. – In: 26. Plant and Animal Genome Conference (PAG XXVI), Jan 2018, San Diego, California, United States. Pp. 24 slides. San Diego: 2018. https://hal.inrae.fr/hal-02789754

Schansker G., Tóth S.Z., Holzwarth A.R., Garab G.: Chlorophyll a fluorescence: beyond the limits of the QA model. – Photosynth. Res. 120: 43-58, 2014. https://link.springer.com/article/10.1007%2Fs11120-013-9806-5 PubMed

Shinkarev V.P., Govindjee G.: Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis. – P. Natl. Acad. Sci. USA 90: 7466-7469, 1993. https://www.pnas.org/content/90/16/7466 PubMed PMC

Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. – Plant Cell 33: 1286-1302, 2021. PubMed PMC

Stirbet A., Riznichenko G.Yu., Rubin A., Govindjee: Modeling chlorophyll a fluorescence transient: relation to photosynthesis. – Biochemistry-Moscow 79: 291-323, 2014. https://link.springer.com/article/10.1134%2FS0006297914040014 PubMed

Verdouw C., Sundmaeker H., Tekinerdogan B. et al.: Architecture framework of IoT-based food and farm systems: A multiple case study. – Comput. Electron. Agr. 165: 104939, 2019. https://www.sciencedirect.com/science/article/pii/S0168169919306192?via%3Dihub

Walker B.J., Busch F.A., Driever S.M. et al.: Survey of tools for measuring in vivo photosynthesis. – In: Covshoff S. (ed.): Photosynthesis. Vol. 1770. Pp. 3-24. Humana Press, New York: 2018. https://link.springer.com/protocol/10.1007%2F978-1-4939-7786-4_1 PubMed

Yu J., Liberton M., Cliften P.F. et al.: Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. – Sci. Rep.-UK 5: 8132, 2015. https://www.nature.com/articles/srep08132 PubMed PMC

Zhou W., Li L., Luo M., Chou W.: REST API design patterns for SDN northbound API. – 2014 28th International Conference on Advanced Information Networking and Applications Workshops. Pp. 358-365. IEEE, Victoria: 2014. https://ieeexplore.ieee.org/document/6844664

Zhu X.G., Govindjee G., Baker N.R. et al.: Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. – Planta 223: 114-133, 2005. https://link.springer.com/article/10.1007%2Fs00425-005-0064-4 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace