Light curve parametrization of three rice (Oryza sativa L.) cultivars based on mechanistic models

. 2024 ; 62 (3) : 305-313. [epub] 20240930

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649355

This study aimed to assess variations in leaf gas-exchange characteristics, leaf pigment contents, and some intrinsic traits of photosynthetic pigment molecules in three rice cultivars (cv. JR3015, Wufengyou3015, and Jifengyou3015) using mechanistic models. The findings revealed that chlorophyll content varied significantly among the three cultivars, but not maximum electron transport rate. JR3015 had lower chlorophyll content but the highest eigen-absorption cross-section (σik) and the lowest minimum average life-time of photosynthetic pigment molecules in the excited state (τmin). Our results suggested that the highest σik and the lowest τmin in JR3015 facilitated its electron transport rate despite its lower leaf chlorophyll content. Furthermore, compared to Jifengyou3015 and Wufengyou3015, JR3015 had the lowest photosynthetic electron-use efficiency via PSII, which contributed to its lowest maximum net photosynthetic rate. These findings are important in selecting rice cultivars based on their differences in photosynthetic capacity.

Zobrazit více v PubMed

Barth C., Krause G.H., Winter K.: Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. – Plant Cell Environ. 24: 163-176, 2001. 10.1111/j.1365-3040.2001.00673.x DOI

Chandra R., Kang H.: Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. – For. Sci. Technol. 12: 55-61, 2016. 10.1080/21580103.2015.1044024 DOI

Chen M.: Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. – Annu. Rev. Biochem. 83: 317-340, 2014. 10.1146/annurev-biochem-072711-162943 PubMed DOI

Chen T., Chen Z., Atul P.S. et al.: Characterization of a novel gain-of-function spotted-leaf mutant with enhanced disease resistance in rice. – Rice Sci. 26: 372-383, 2019. 10.1016/j.rsci.2019.03.001 DOI

Chen X., Sun J., Lyu M. et al.: Prediction of photosynthetic light-response curves using traits of the leaf economics spectrum for 75 woody species: effects of leaf habit and sun–shade dichotomy. – Am. J. Bot. 108: 423-431, 2021. 10.1002/ajb2.1629 PubMed DOI

Coleman H.D., Samuels A.L., Guy R.D., Mansfield S.D.: Perturbed lignification impacts tree growth in hybrid poplar – a function of sink strength, vascular integrity, and photosynthetic assimilation. – Plant Physiol. 148: 1229-1237, 2008. 10.1104/pp.108.125500 PubMed DOI PMC

De Boni L., Correa D.S., Pavinatto F.J. et al.: Excited state absorption spectrum of chlorophyll a obtained with white-light continuum. – J. Chem. Phys. 126: 165102, 2007. 10.1063/1.2722755 PubMed DOI

Essemine J., Xiao Y., Qu M. et al.: Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa L.) leaves under heat stress. – J. Plant Physiol. 211: 138-146, 2017. 10.1016/j.jplph.2017.01.007 PubMed DOI

Hitchcock A., Hunter C.N., Sobotka R. et al.: Redesigning the photosynthetic light reactions to enhance photosynthesis – the PhotoRedesign consortium. – Plant J. 109: 23-34, 2022. 10.1111/tpj.15552 PubMed DOI

Hu P., Ma J., Kang S.J. et al.: Chlorophyllide-a oxygenase 1 (OsCAO1) over-expression affects rice photosynthetic rate and grain yield. – Rice Sci. 30: 87-91, 2023. 10.1016/j.rsci.2022.05.006 DOI

Hu W., Tian S.B., Di Q. et al.: Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. – Photosynthetica 56: 1204-1211, 2018. 10.1007/s11099-018-0822-8 DOI

Hussain S., Iqbal N., Raza M.A. et al.: Distribution and effects of ionic titanium application on energy partitioning and quantum yield of soybean under different light conditions. – Photosynthetica 57: 572-580, 2019. 10.32615/ps.2019.074 DOI

Insausti P., Ploschuk E.L., Izaguirre M.M., Podworny M.: The effect of sunlight interception by sooty mold on chlorophyll content and photosynthesis in orange leaves (Citrus sinensis L.). – Eur. J. Plant Pathol. 143: 559-565, 2015. 10.1007/s10658-015-0709-5 DOI

Kalisz A., Jezdinský A., Pokluda R. et al.: Impacts of chilling on photosynthesis and chlorophyll pigment content in juvenile basil cultivars. – Hortic. Environ. Biotech. 57: 330-339, 2016. 10.1007/s13580-016-0095-8 DOI

Kang J.H., Yoon H.I., Lee J.M. et al.: Electron transport and photosynthetic performance in Fragaria × ananassa Duch. acclimated to the solar spectrum modified by a spectrum conversion film. – Photosynth. Res. 151: 31-46, 2022. 10.1007/s11120-021-00875-7 PubMed DOI

Kitao M., Yasuda Y., Kodani E. et al.: Integration of electron flow partitioning improves estimation of photosynthetic rate under various environmental conditions based on chlorophyll fluorescence. – Remote Sens. Environ. 254: 112273, 2021. 10.1016/j.rse.2020.112273 DOI

Kondo T., Chen W.J., Schlau-Cohen G.S.: Single-molecule fluorescence spectroscopy of photosynthetic systems. – Chem. Rev. 117: 860-898, 2017. 10.1021/acs.chemrev.6b00195 PubMed DOI

Ley A.C., Mauzerall D.C.: Absolute absorption cross-sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. – BBA-Bioenergetics 680: 95-106, 1982. 10.1016/0005-2728(82)90320-6 DOI

Li Y., He N., Hou J. et al.: Factors influencing leaf chlorophyll content in natural forests at the biome scale. – Front. Ecol. Evol. 6: 64, 2018. 10.3389/fevo.2018.00064 DOI

Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. – Method. Enzymol. 148: 350-382, 1987. 10.1016/0076-6879(87)48036-1 DOI

Major K.M., Dunton K.H.: Variations in light-harvesting characteristics of the seagrass, Thalassia testudinum: evidence for photoacclimation. – J. Exp. Mar. Biol. Ecol. 275: 173-189, 2002. 10.1016/S0022-0981(02)00212-5 DOI

Mauro R.P., Occhipinti A., Longo A.M.G., Mauromicale G.: Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynthesis of subterranean clover. – J. Agron. Crop Sci. 197: 57-66, 2011. 10.1111/j.1439-037X.2010.00436.x DOI

Mirkovic T., Ostroumov E.E., Anna J.M. et al.: Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. – Chem. Rev. 117: 249-293, 2017. 10.1021/acs.chemrev.6b00002 PubMed DOI

Murchie E.H., Horton P.: Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. – Plant Cell Environ. 20: 438-448, 2008. 10.1046/j.1365-3040.1997.d01-95.x DOI

Murchie E.H., Niyogi K.K.: Manipulation of photoprotection to improve plant photosynthesis. – Plant Physiol. 155: 86-92, 2011. 10.1104/pp.110.168831 PubMed DOI PMC

Nilkens M., Kress E., Lambrev P. et al.: Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. – BBA-Bioenergetics 1797: 466-475, 2010. 10.1016/j.bbabio.2010.01.001 PubMed DOI

Oue H.: Comparisons of the stomatal conductance and electron transport rate of three Japanese rice cultivars including Himenorin in Ehime Prefecture. – J. Agric. Meteorol. 79: 77-84, 2023. 10.2480/agrmet.D-22-00025 DOI

Porra R.J.: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. – Photosynth. Res. 73: 149-156, 2002. 10.1023/A:1020470224740 PubMed DOI

Qian X., Liu L., Croft H., Chen J.: Relationship between leaf maximum carboxylation rate and chlorophyll content preserved across 13 species. – J. Geophys. Res.-Biogeo. 126: e2020JG006076, 2021. 10.1029/2020JG006076 DOI

Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. – Photosynthetica 40: 13-29, 2002. 10.1023/A:1020125719386 DOI

Ruban A.V.: Evolution under the sun: optimizing light harvesting in photosynthesis. – J. Exp. Bot. 66: 7-23, 2015. 10.1093/jxb/eru400 PubMed DOI

Sanda S., Yoshida K., Kuwano M. et al.: Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. – Physiol. Plantarum 142: 247-264, 2011. 10.1111/j.1399-3054.2011.01473.x PubMed DOI

Sarkar R.K.: Saccharide content and growth parameters in relation with flooding tolerance in rice. – Biol. Plantarum 40: 597-603, 1997. 10.1023/A:1001713505921 DOI

Silva M.D.A., Pincelli R.P., Barbosa A.D.M.: Water stress effects on chlorophyll fluorescence and chlorophyll content in sugarcane cultivars with contrasting tolerance. – Biosci. J. 34: 75-87, 2018. 10.14393/BJ-v34n1a2018-36570 DOI

Slattery R.A., VanLoocke A., Bernacchi C.J. et al.: Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. – Front. Plant Sci. 8: 549, 2017. 10.3389/fpls.2017.00549 PubMed DOI PMC

Sofo A., Dichio B., Montanaro G., Xiloyannis C.: Photosynthetic performance and light response of two olive cultivars under different water and light regimes. – Photosynthetica 47: 602-608, 2009. 10.1007/s11099-009-0086-4 DOI

Suggett D.J., Le Floc'h E., Harris G.N. et al.: Different strategies of photoacclimation by two strains of Emiliania huxleyi (Haptophyta). – J. Phycol. 43: 1209-1222, 2007. 10.1111/j.1529-8817.2007.00406.x DOI

Tekalign T., Hammes P.S.: Response of potato grown under non-inductive condition paclobutrazol: shoot growth, chlorophyll content, net photosynthesis, assimilate partitioning, tuber yield, quality, and dormancy. – Plant Growth Regul. 43: 227-236, 2004. 10.1023/B:GROW.0000045992.98746.8d DOI

Yang P., Li Y., He C. et al.: Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure. – J. Proteomics 214: 103621, 2020a. 10.1016/j.jprot.2019.103621 PubMed DOI

Yang X.L., Dong W., Liu L.H. et al.: Uncovering the differential growth of Microcystis aeruginosa cultivated under nitrate and ammonium from a pathophysiological perspective. – ACS ES&T Water 3: 1161-1171, 2023. 10.1021/acsestwater.2c00624 DOI

Yang X.L., Liu L.H., Yin Z.K. et al.: Quantifying photosynthetic performance of phytoplankton based on photosynthesis–irradiance response models. – Environ. Sci. Eur. 32: 24, 2020b. 10.1186/s12302-020-00306-9 DOI

Ye Z.-P.: Nonlinear optical absorption of photosynthetic pigment molecules in leaves. – Photosynth. Res. 112: 31-37, 2012. 10.1007/s11120-012-9730-0 PubMed DOI

Ye Z.-P., Kang H.-J., An T. et al.: Modeling light response of electron transport rate and its allocation for ribulose biphosphate carboxylation and oxygenation. – Front. Plant Sci. 11: 581851, 2020. 10.3389/fpls.2020.581851 PubMed DOI PMC

Ye Z.-P., Robakowski P., Suggett D.J.: A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. – Planta 237: 837-847, 2013a. 10.1007/s00425-012-1790-z PubMed DOI

Ye Z.-P., Suggett J.D., Robakowski P., Kang H.-J.: A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. – New Phytol. 199: 110-120, 2013b. 10.1111/nph.12242 PubMed DOI

Zhang Z., Li G., Gao H. et al.: Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. – PLoS ONE 7: e42936, 2012. 10.1371/journal.pone.0042936 PubMed DOI PMC

Zhao N., Meng P., Yu X.: Photosynthetic stimulation of saplings by the interaction of CO2 and water stress. – J. Forestry Res. 30: 1233-1243, 2019. 10.1007/s11676-018-0764-9 DOI

Zhao X., Chen T., Feng B. et al.: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. – Front. Plant Sci. 7: 1968, 2017. 10.3389/fpls.2016.01968 PubMed DOI PMC

Zhao Y., Zou Y., Wang L., Wang C.: Tropical rainforest successional processes can facilitate successfully recovery of extremely degraded tropical forest ecosystems following intensive mining operations. – Front. Environ. Sci. 9: 701210, 2021. 10.3389/fenvs.2021.701210 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...