Redesigning the photosynthetic light reactions to enhance photosynthesis - the PhotoRedesign consortium
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34709696
DOI
10.1111/tpj.15552
Knihovny.cz E-zdroje
- Klíčová slova
- Rhodobacter, Synechocystis, Arabidopsis, adaptive laboratory evolution, assembly, evolution, genetic engineering, photosynthesis, photosystem, synthetic biology,
- MeSH
- Arabidopsis genetika fyziologie účinky záření MeSH
- fotosyntéza genetika MeSH
- fotosystém I (proteinový komplex) genetika MeSH
- fotosystém II (proteinový komplex) genetika MeSH
- Rhodobacter sphaeroides genetika fyziologie účinky záření MeSH
- řízená evoluce molekul * MeSH
- světlo MeSH
- Synechocystis genetika fyziologie účinky záření MeSH
- syntetická biologie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) MeSH
In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.
Zobrazit více v PubMed
Adir, N., Bar-Zvi, S. & Harris, D. (2020) The amazing phycobilisome. Biochim Biophys Acta Bioenerg, 1861, 148047.
Aigner, H., Wilson, R.H., Bracher, A., Calisse, L., Bhat, J.Y., Hartl, F.U. et al. (2017) Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science, 358, 1272-1278.
Amunts, A. & Nelson, N. (2009) Plant photosystem I design in the light of evolution. Structure, 17, 637-650.
Antonovsky, N., Gleizer, S., Noor, E., Zohar, Y., Herz, E., Barenholz, U. et al. (2016) Sugar synthesis from CO2 in Escherichia coli. Cell, 166, 115-125.
Armbruster, U., Zuhlke, J., Rengstl, B., Kreller, R., Makarenko, E., Ruhle, T. et al. (2010) The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. The Plant Cell, 22, 3439-3460.
Barber, J. (2008) Photosynthetic generation of oxygen. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 2665-2674.
Barros, T. & Kühlbrandt, W. (2009) Crystallisation, structure and function of plant light-harvesting complex II. Biochimica Et Biophysica Acta, 1787, 753-772.
Blankenship, R.E. (2014) Molecular Mechanisms of Photosynthesis, 2nd edition. Hoboken, NJ: Wiley Blackwell.
Blankenship, R.E., Tiede, D.M., Barber, J., Brudvig, G.W., Fleming, G., Ghirardi, M. et al. (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332, 805-809.
Bryant, D.A., Hunter, C.N. & Warren, M.J. (2020) Biosynthesis of the modified tetrapyrroles-the pigments of life. Journal of Biological Chemistry, 295, 6888-6925.
Bučinská, L., Kiss, E., Koník, P., Knoppová, J., Komenda, J. & Sobotka, R. (2018) The ribosome-bound protein Pam68 promotes insertion of chlorophyll into the CP47 subunit of photosystem II. Plant Physiology, 176, 2931-2942.
Cao, P., Su, X., Pan, X., Liu, Z., Chang, W. & Li, M. (2018) Structure, assembly and energy transfer of plant photosystem II supercomplex. Biochim Biophys Acta Bioenerg, 1859, 633-644.
Cao, T.J., Wang, L.J., Huang, X.Q., Deng, Y.Y., Yang, L.E. & Lu, S. (2020) Manipulation of Synechocystis sp. PCC 6803 as a platform for functional identification of genes involved in carotenoid metabolism. Plant Biotechnology Journal, 18, 605-607.
Cardona, T., Murray, J.W. & Rutherford, A.W. (2015) Origin and evolution of water oxidation before the last common ancestor of the cyanobacteria. Molecular Biology and Evolution, 32, 1310-1328.
Caspy, I. & Nelson, N. (2018) Structure of the plant photosystem I. Biochemical Society Transactions, 46, 285-294.
Chen, G.E., Canniffe, D.P., Barnett, S.F.H., Hollingshead, S., Brindley, A.A., Vasilev, C. et al. (2018) Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Science Advances, 4, eaaq1407.
Chen, J.H., Chen, S.T., He, N.Y., Wang, Q.L., Zhao, Y., Gao, W. et al. (2020) Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nature Plants, 6, 570-580.
Chen, M., Schliep, M., Willows, R.D., Cai, Z.L., Neilan, B.A. & Scheer, H. (2010) A red-shifted chlorophyll. Science, 329, 1318-1319.
Chi, S.C., Mothersole, D.J., Dilbeck, P., Niedzwiedzki, D.M., Zhang, H., Qian, P. et al. (2015) Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochimica Et Biophysica Acta, 1847, 189-201.
Chidgey, J.W., Linhartová, M., Komenda, J., Jackson, P.J., Dickman, M.J., Canniffe, D.P. et al. (2014) A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. The Plant Cell, 26, 1267-1279.
Cock, J.M. & Coelho, S.M. (2011) Algal models in plant biology. Journal of Experimental Botany, 62, 2425-2430.
Cotton, C.A., Douglass, J.S., De Causmaecker, S., Brinkert, K., Cardona, T., Fantuzzi, A. et al. (2015) Photosynthetic constraints on fuel from microbes. Front Bioeng Biotechnol, 3, 36.
Croce, R. & van Amerongen, H. (2014) Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10, 492-501.
Dann, M. & Leister, D. (2019) Evidence that cyanobacterial Sll1217 functions analogously to PGRL1 in enhancing PGR5-dependent cyclic electron flow. Nature Communications, 10, 5299.
Dann, M., Ortiz, E.M., Thomas, M., Guljamow, A., Lehmann, M., Schaefer, H. et al. (2021) Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nature Plants, 7, 681-695.
Davidi, D., Shamshoum, M., Guo, Z., Bar-On, Y.M., Prywes, N., Oz, A. et al. (2020) Highly active rubiscos discovered by systematic interrogation of natural sequence diversity. EMBO Journal, 39, e104081.
Dent, R.M., Han, M. & Niyogi, K.K. (2001) Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends in Plant Science, 6, 364-371.
Dragosits, M. & Mattanovich, D. (2013) Adaptive laboratory evolution - principles and applications for biotechnology. Microbial Cell Factories, 12, 64.
Elias, E., Liguori, N., Saga, Y., Schäfers, J. & Croce, R. (2021) Harvesting far-red light with plant antenna complexes incorporating chlorophyll d. Biomacromolecules, 22, 3313-3322.
Erickson, E., Wakao, S. & Niyogi, K.K. (2015) Light stress and photoprotection in Chlamydomonas reinhardtii. The Plant Journal, 82, 449-465.
Flamholz, A.I., Dugan, E., Blikstad, C., Gleizer, S., Ben-Nissan, R., Amram, S. et al. (2020) Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. Elife, 9, e59882.
Garcia-Molina, A. & Leister, D. (2020) Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis. Nature Plants, 6, 9-12.
Gardiner, A.T., Nguyen-Phan, T.C. & Cogdell, R.J. (2020) A comparative look at structural variation among RC-LH1 'Core' complexes present in anoxygenic phototrophic bacteria. Photosynthesis Research, 145, 83-96.
Grossman, A.R. (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Current Opinion in Plant Biology, 3, 132-137.
Hanikenne, M. (2003) Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. New Phytologist, 159, 331-340.
Herz, E., Antonovsky, N., Bar-On, Y., Davidi, D., Gleizer, S., Prywes, N. et al. (2017) The genetic basis for the adaptation of E. coli to sugar synthesis from CO2. Nature Communications, 8, 1705.
Hicks, G.R., Hironaka, C.M., Dauvillee, D., Funke, R.P., D'Hulst, C., Waffenschmidt, S. et al. (2001) When simpler is better. Unicellular green algae for discovering new genes and functions in carbohydrate metabolism. Plant Physiology, 127, 1334-1338.
Hippler, M., Redding, K. & Rochaix, J.D. (1998) Chlamydomonas genetics, a tool for the study of bioenergetic pathways. Biochimica Et Biophysica Acta, 1367, 1-62.
Ho, M.Y., Shen, G., Canniffe, D.P., Zhao, C. & Bryant, D.A. (2016) Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 353, aaf9178.
Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y. & Minagawa, J. (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature, 464, 1210-1213.
Kirilovsky, D. & Kerfeld, C.A. (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochimica Et Biophysica Acta, 1817, 158-166.
Kirilovsky, D. & Kerfeld, C.A. (2016) Cyanobacterial photoprotection by the orange carotenoid protein. Nature Plants, 2, 16180.
Komenda, J. & Sobotka, R. (2016) Cyanobacterial high-light-inducible proteins - protectors of chlorophyll-protein synthesis and assembly. Biochimica Et Biophysica Acta, 1857, 288-295.
Kromdijk, J., Glowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K. et al. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354, 857-861.
Lehmann, M., Vamvaka, E., Torrado, A., Jahns, P., Dann, M., Rosenhammer, L. et al. (2021) Introduction of the carotenoid biosynthesis α-branch into Synechocystis sp. PCC 6803 for lutein production. Frontiers in Plant Science, 12, 699424.
Leister, D. (2018) Experimental evolution in photoautotrophic microorganisms as a means of enhancing chloroplast functions. Essays in Biochemistry, 62, 77-84.
Leister, D. (2019b) Genetic engineering, synthetic biology and the light reactions of photosynthesis. Plant Physiology, 179, 778-793.
Leister, D. (2019a) Thawing out frozen metabolic accidents. BMC Biology, 17, 8.
Leupold, D., Voigt, B., Beenken, W. & Stiel, H. (2000) Pigment-protein architecture in the light-harvesting antenna complexes of purple bacteria: does the crystal structure reflect the native pigment-protein arrangement? FEBS Letters, 480, 73-78.
Mascoli, V., Bersanini, L. & Croce, R. (2020) Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis. Nature Plants, 6, 1044-1053.
Melis, A. (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 177, 272-280.
Merchant, S.S., Kropat, J., Liu, B., Shaw, J. & Warakanont, J. (2012) TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Current Opinion in Biotechnology, 23, 352-363.
Meurer, J., Plucken, H., Kowallik, K.V. & Westhoff, P. (1998) A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO Journal, 17, 5286-5297.
Mothersole, D.J., Jackson, P.J., Vasilev, C., Tucker, J.D., Brindley, A.A., Dickman, M.J. et al. (2016) PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides. Molecular Microbiology, 99, 307-327.
Nath, K., Jajoo, A., Poudyal, R.S., Timilsina, R., Park, Y.S., Aro, E.M. et al. (2013) Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Letters, 587, 3372-3381.
Nelson, N. (2013) Evolution of photosystem I and the control of global enthalpy in an oxidizing world. Photosynthesis Research, 116, 145-151.
Niederman, R.A. (2016) Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria. Biochimica Et Biophysica Acta, 1857, 232-246.
Nixon, P.J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. (2010) Recent advances in understanding the assembly and repair of photosystem II. Annals of Botany, 106, 1-16.
Ort, D.R., Merchant, S.S., Alric, J., Barkan, A., Blankenship, R.E., Bock, R. et al. (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences U S A, 112, 8529-8536.
Pascual Aznar, G., Konert, G., Bečková, M., Kotabová, E., Gardian, Z., Knoppová, J. et al. (2021) Psb35 protein stabilizes the CP47 assembly module and associated high-light inducible proteins during the biogenesis of Photosystem II in the cyanobacterium Synechocystis sp. PCC6803. Plant and Cell Physiology, 62, 178-190.
Pesaresi, P., Scharfenberg, M., Weigel, M., Granlund, I., Schroder, W.P., Finazzi, G. et al. (2009) Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Molecular Plant, 2, 236-248.
Pinnola, A. & Bassi, R. (2018) Molecular mechanisms involved in plant photoprotection. Biochemical Society Transactions, 46, 467-482.
Promnares, K., Komenda, J., Bumba, L., Nebesarova, J., Vacha, F. & Tichy, M. (2006) Cyanobacterial small chlorophyll binding protein ScpD (HliB) is located on the periphery of Photosystem II in the vicinity of PsbH and CP47 subunits. Journal of Biological Chemistry, 281, 32705-32713.
Rochaix, J.D. (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annual Review of Genetics, 29, 209-230.
Ruban, A.V. (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170, 1903-1916.
Rühle, T., Dann, M., Reiter, B., Schünemann, D., Naranjo, B., Penzler, J.F. et al. (2021) PGRL2 triggers degradation of PGR5 in the absence of PGRL1. Nature Communications, 12, 3941.
Saer, R.G. & Blankenship, R.E. (2017) Light harvesting in phototrophic bacteria: structure and function. The Biochemical Journal, 474, 2107-2131.
Salomé, P.A. & Merchant, S.S. (2019) A series of fortunate events: introducing chlamydomonas as a reference organism. The Plant Cell, 31, 1682-1707.
Sanchez-Baracaldo, P. & Cardona, T. (2020) On the origin of oxygenic photosynthesis and cyanobacteria. New Phytologist, 225, 1440-1446.
Sandberg, T.E., Salazar, M.J., Weng, L.L., Palsson, B.O. & Feist, A.M. (2019) The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metabolic Engineering, 56, 1-16.
Sandmann, G., Albrecht, M., Schnurr, G., Knörzer, O. & Böger, P. (1999) The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends in Biotechnology, 17, 233-237.
Schmid, V.H. (2008) Light-harvesting complexes of vascular plants. Cellular and Molecular Life Sciences, 65, 3619-3639.
Sener, M., Strumpfer, J., Singharoy, A., Hunter, C.N. & Schulten, K. (2016) Overall energy conversion efficiency of a photosynthetic vesicle. Elife, 5, e09541.
Shi, T., Bibby, T.S., Jiang, L., Irwin, A.J. & Falkowski, P.G. (2005) Protein interactions limit the rate of evolution of photosynthetic genes in cyanobacteria. Molecular Biology and Evolution, 22, 2179-2189.
Simkin, A.J., McAusland, L., Lawson, T. & Raines, C.A. (2017) Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiology, 175, 134-145.
Treves, H., Murik, O., Kedem, I., Eisenstadt, D., Meir, S., Rogachev, I. et al. (2017) Metabolic flexibility underpins growth capabilities of the fastest growing alga. Current Biology, 27(2559-2567), e2553.
Treves, H., Raanan, H., Finkel, O.M., Berkowicz, S.M., Keren, N., Shotland, Y. et al. (2013) A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiology Ecology, 86, 373-380.
Treves, H., Raanan, H., Kedem, I., Murik, O., Keren, N., Zer, H. et al. (2016) The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytologist, 210, 1229-1243.
Trinugroho, J.P., Bečková, M., Shao, S., Yu, J., Zhao, Z., Murray, J.W. et al. (2020) Chlorophyll f synthesis by a super-roque photosystem II complex. Nature Plants, 6, 238-244.
Turmo, A., Gonzalez-Esquer, C.R. & Kerfeld, C.A. (2017) Carboxysomes: metabolic modules for CO2 fixation. FEMS Microbiology Letters, 364, fnx176.
Ungerer, J., Wendt, K.E., Hendry, J.I., Maranas, C.D. & Pakrasi, H.B. (2018) Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proceedings of the National Academy of Sciences U S A, 115, E11761-E11770.
Walker, D.A. (2009) Biofuels, facts, fantasy, and feasibility. Journal of Applied Phycology, 21, 509-517.
Wang, L.M., Shen, B.R., Li, B.D., Zhang, C.L., Lin, M., Tong, P.P. et al. (2020) A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Molecular Plant, 13, 1802-1815.
Watanabe, M. & Ikeuchi, M. (2013) Phycobilisome: architecture of a light-harvesting supercomplex. Photosynthesis Research, 116, 265-276.
Wijffels, R.H. & Barbosa, M.J. (2010) An outlook on microalgal biofuels. Science, 329, 796-799.
Williamson, A., Conlan, B., Hillier, W. & Wydrzynski, T. (2011) The evolution of photosystem II: insights into the past and future. Photosynthesis Research, 107, 71-86.
Xu, H., Vavilin, D., Funk, C. & Vermaas, W. (2002) Small CAB-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Molecular Biology, 49, 149-160.
Yang, D., Park, S.Y. & Lee, S.Y. (2021) Production of rainbow colorants by metabolically engineered Escherichia coli. Advanced Science, 8, 2100743.
Yu, J.F., Knoppová, J., Michoux, F., Bialek, W., Cota, E., Shukla, M.K. et al. (2018) Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein. Proceedings of the National Academy of Sciences of the United States of America, 115, E7824-E7833.
Zhu, X.G., Long, S.P. & Ort, D.R. (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology, 19, 153-159.
Zhu, X.G., Long, S.P. & Ort, D.R. (2010) Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235-261.