• This record comes from PubMed

Photosynthetic responses of Eulophia dentata, Bletilla formosana, and Saccharum spontaneum under various photosynthetic photon flux density conditions

. 2022 ; 60 (4) : 539-548. [epub] 20221216

Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection

Document type Journal Article

This study aimed to determine the photosynthetic performance and differences in chlorophyll fluorescence (ChlF) parameters between Eulophia dentata and its companion species Bletilla formosana and Saccharum spontaneum when subjected to different photosynthetic photon flux density (PPFDs). Leaf surfaces were then illuminated with 50, 100 (low PPFDs), 300, 500, 800 (moderate PPFDs); 1,000; 1,500; and 2,000 (high PPFDs) μmol m-2·s-1, and the ChlF parameters were measured during the whole process. Increasing nonphotochemical quenching of ChlF and decreasing potential quantum efficiency of PSII, actual quantum efficiency of PSII, and quantum efficiency ratio of PSII in dark recovery from 0-60 min were observed in all leaves. A significant and negative relationship was detected between energy-dependent quenching (qE) and photoinhibition percent in three species under specific PPFD conditions, whereas a significant and positive relationship was detected between photoinhibitory quenching (qI) and photoinhibition percent. The qE and qI can be easily measured in the field and provide useful ecological indexes for E. dentata species restoration, habitat creation, and monitoring.

See more in PubMed

Adams W.W. III, Zarter C.R., Ebbert V., Demmig-Adams V.: Photoprotective strategies of overwintering evergreens. – BioScience 54: 41-49, 2004. 10.1641/0006-3568(2004)054[0041:PSOOE]2.0.CO;2 DOI

Björkman O., Demmig-Adams B.: Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. – In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 17-47. Springer, Berlin-Heidelberg: 1995. 10.1007/978-3-642-79354-7_2 DOI

Bussotti F., Gerosa G., Digrado A., Pollastrini M.: Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. – Ecol. Indic. 108: 105686, 2020. 10.1016/j.ecolind.2019.105686 DOI

Chang L.H., Liu C.H., Li. C.Y.: [Asymbiotic germination and plant regeneration of Eulophia dentate Ames, a critically endangered plant in Taiwan.] – Taiwan J. Biodivers. 16: 241-251, 2014.

Colom M.R., Pini Prato E., Giannini R.: Chlorophyll fluorescence and photosynthetic response to light in 1-year-old needles during spring and early summer in Pinus leucodermis. – Trees-Struct. Funct. 17: 207-210, 2003. https://www.airitilibrary.com/Publication/alDetailedMesh?docid=20766971-201407-201408290002-201408290002-241-251

Demmig-Adams B., Adams W.W. III, Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. – Physiol. Plantarum 98: 253-264, 1996. 10.1034/j.1399-3054.1996.980206.x DOI

Demmig-Adams B., Adams W.W. III, Mattoo A.K.: Photoprotection, Photoinhibition, Gene Regulation, and Environment. Pp. 382. Springer, Dordrech: 2006. 10.1007/1-4020-3579-9 DOI

Demmig-Adams B., Stewart J.J., López-Pozo M. et al.: Zeaxanthin, a molecule for photoprotection in many different environments. – Molecules 25: 5825, 2020. PubMed PMC

Dewir Y.H., El-Mahrouk M.E.S., Al-Shmgani H.S. et al.: Photosynthetic and biochemical characterization of in vitro-derived African violet (Saintpaulia ionantha H. Wendl) plants to ex vitro conditions. – J. Plant Interact. 10: 101-108, 2015. 10.1080/17429145.2015.1018967 DOI

Editorial Committee of the Red List of Taiwan Plants: The Red List of Vascular Plants of Taiwan, 2017. Pp. 198. Endemic Species Research Institute, Forestry Bureau, Council of Agriculture, Executive Yuan and Taiwan Society of Plant Systematics, 2017.

Giudici G.N.M.: Photoinhibition of primary photosynthetic processes in hydrated Polytrichum commune: analysis of non-photochemical quenching affecting species resistance. – Czech Polar Rep. 9: 160-169, 2019. 10.5817/CPR2019-2-14 DOI

Guidi L., Lo Piccolo E., Landi M.: Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? – Front. Plant Sci. 10: 174, 2019. 10.3389/fpls.2019.00174 PubMed DOI PMC

Johnson M.P., Ruban A.V.: Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. – J. Biol. Chem. 286: 19973-19981, 2011. 10.1074/jbc.M111.237255 PubMed DOI PMC

Kalapchieva S., Topalova E., Petkova V.: Morphological, physiological and productivity response in garden pea genotypes during high temperature stress. – Genetika 51: 417-428, 2019. 10.2298/GENSR1902417K DOI

Kałużewicz A., Bączek-Kwinta R., Krzesiński W. et al.: Effect of biostimulants on chlorophyll fluorescence parameters of broccoli (Brassica oleracea var. italica) under drought stress and rewatering. – Acta Sci. Pol.-Hortoru. 17: 97-106, 2018. 10.24326/asphc.2018.1.9 DOI

Li Z., Wang G., Liu X. et al.: Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. – BMC Genomics 22: 456, 2021. 10.1186/s12864-021-07799-5 PubMed DOI PMC

Lin C.W., Hwang T.L., Chen F.A. et al.: Chemical constituents of the rhizomes of Bletilla formosana and their potential anti-inflammatory activity. – J. Nat. Prod. 79: 1911-1921, 2016. 10.1021/acs.jnatprod.6b00118 PubMed DOI

Makarenko M.S., Kozel N.V., Usatov A.V. et al.: A state of PSI and PSII photochemistry of sunflower yellow-green plastome mutant. – J. Biol. Sci. 16: 193-198, 2016. 10.3844/ojbsci.2016.193.198 DOI

Malnoë A.: Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. – Environ. Exp. Bot. 154: 123-133, 2018.

Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI

Moya I., Loayza H., López M.L. et al.: Canopy chlorophyll fluorescence applied to stress detection using an easy to build micro-lidar. – Photosynth. Res. 142: 1-15, 2019. 10.1007/s11120-019-00642-9 PubMed DOI PMC

Murchie E.H., Niyogi K.K.: Manipulation of photoprotection to improve plant photosynthesis. – Plant Physiol. 155: 86-92, 2011. 10.1104/pp.110.168831 PubMed DOI PMC

Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. – Plant. Physiol. 125: 1558-1566, 2001. 10.1104/pp.125.4.1558 PubMed DOI PMC

Nilkens M., Kress E., Lambrev P. et al.: Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. – BBA-Biomembranes 1797: 466-475, 2010. 10.1016/j.bbabio.2010.01.001 PubMed DOI

Orekhova A., Barták M., Casanova-Katny A., Hájek J.: Resistance of Antarctic moss Sanionia uncinata to photoinhibition: chlorophyll fluorescence analysis of samples from the western and eastern coasts of the Antarctic Peninsula. – Plant Biol. 23: 653-663, 2021. 10.1111/plb.13270 PubMed DOI

Pandey V.C., Bajpai O., Pandey D.N., Singh N.: Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. – Genet. Resour. Crop Evol. 62: 443-450, 2015. 10.1007/s10722-014-0208-0 DOI

Pandey V.C., Sahu N., Singh D.P.: Physiological profiling of invasive plant species for ecological restoration of fly ash deposits. – Urban For. Urban Gree. 54: 126773, 2020. 10.1016/j.ufug.2020.126773 DOI

Papageorgiou G.C., Govindjee: The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: definitions, timelines, viewpoints, open questions. – In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Pp. 1-44. Springer, Dordrecht: 2014. 10.1007/978-94-017-9032-1_1 DOI

Pastenes C., Horton P.: Effect of high temperature on photosynthesis in beans. (I. Oxygen evolution and chlorophyll fluorescence) – Plant Physiol. 112: 1245-1251, 1996. 10.1104/pp.112.3.1245 PubMed DOI PMC

Portela F.C.S., Macieira B.P.B., Zanetti L.V. et al.: How does Cariniana estrellensis respond to different irradiance levels? – J. Forestry Res. 30: 31-44, 2019. 10.1007/s11676-017-0578-1 DOI

Rosa-Manzano E., Andrade J.L., García-Mendoza E. et al.: Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico. – Planta 242: 1425-1438, 2015. 10.1007/s00425-015-2383-4 PubMed DOI

Souza C.S.C.R, Santos V.A.H.F., Ferreira M.J., Gonçalves J.F.C.: [Biomass, growth and ecophysiological responses of young plants of Bertholletia excelsa Bonpl. subjected to different levels of irradiance.] – Cienc. Florest. 27: 557-569, 2017. [In Portuguese] 10.5902/1980509827736 DOI

Tüffers A.V., Naid G., von Willert D.J.: The contribution of leaf angle to photoprotection in the mangroves Avicennia marina (FORSSK.) VIERH. and Bruguiera gymnorrhiza (L.) LAM. under field conditions in South Africa. – Flora 194: 267-275, 1999. 10.1016/S0367-2530(17)30912-X DOI

Vaid S., Sharma S., Bajaj B.K.: Chemo-enzymatic approaches for consolidated bioconversion of Saccharum spontaneum biomass to ethanol-biofuel. – Bioresource Technol. 329: 124898, 2021. 10.1016/j.biortech.2021.124898 PubMed DOI

Wang C.W., Wong S.L., Liao T.S. et al.: Photosynthesis in response to salinity and submergence in two Rhizophoraceae mangroves adapted to different tidal elevations. – Tree Physiol. 42: 1016-1028, 2022. 10.1093/treephys/tpab167 PubMed DOI

Weng J.H., Chen L.F., Jiang C.Y. et al.: A comparison between yellow-green and green cultivars of four vegetable species in pigments, ascorbate, photosynthesis, energy dissipation, and photoinhibition. – Photosynthetica 49: 361-370, 2011. 10.1007/s11099-011-0046-7 DOI

Wong S.L., Chen C.W., Huang H.W., Weng J.H.: Using combined measurements of gas exchange and chlorophyll fluorescence to investigate the photosynthetic light responses of plant species adapted to different light regimes. – Photosynthetica 50: 206-214, 2012. 10.1007/s11099-012-0027-5 DOI

Wu T.Y., Chen C.C., Lay H.L.: Study on the components and antioxidant activity of the Bletilla plant in Taiwan. – J. Food Drug Anal. 18: 279-289, 2010. 10.38212/2224-6614.2229 DOI

Zulfugarov I.S., Ham O.K., Mishra S.R. et al.: Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size. – BBA-Bioenergetics 1767: 773-780, 2007. 10.1016/j.bbabio.2007.02.021 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...