Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33106678
PubMed Central
PMC7688437
DOI
10.1038/s41596-020-0398-1
PII: 10.1038/s41596-020-0398-1
Knihovny.cz E-zdroje
- MeSH
- dodržování směrnic statistika a číselné údaje MeSH
- kometový test metody normy MeSH
- konsensus MeSH
- laboratoře MeSH
- lidé MeSH
- výzkumný projekt * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The comet assay is a widely used test for the detection of DNA damage and repair activity. However, there are interlaboratory differences in reported levels of baseline and induced damage in the same experimental systems. These differences may be attributed to protocol differences, although it is difficult to identify the relevant conditions because detailed comet assay procedures are not always published. Here, we present a Consensus Statement for the Minimum Information for Reporting Comet Assay (MIRCA) providing recommendations for describing comet assay conditions and results. These recommendations differentiate between 'desirable' and 'essential' information: 'essential' information refers to the precise details that are necessary to assess the quality of the experimental work, whereas 'desirable' information relates to technical issues that might be encountered when repeating the experiments. Adherence to MIRCA recommendations should ensure that comet assay results can be easily interpreted and independently verified by other researchers.
Biomedical Center Medical Faculty in Pilsen Charles University Prague Prague Czech Republic
Centre for Environmental Sciences Hasselt University Hasselt Belgium
Department of Genetic Toxicology and Cancer Biology National Institute of Biology Ljubljana Slovenia
Department of Human Sciences and Quality of Life Promotion San Raffaele University Rome Italy
Department of Nutrition University of Oslo Oslo Norway
Department of Pharmacology and Toxicology University of Navarra Pamplona Spain
Department of Toxicology Faculty of Pharmacy Hacettepe University Ankara Turkey
Environmental Health Department National Institute of Health Dr Ricardo Jorge Porto Portugal
Epidemiological Research Unit Instituto de Saúde Pública Universidade do Porto Porto Portugal
IdiSNA Navarra Institute for Health Research Pamplona Spain
Institute of Experimental Medicine Czech Academy of Sciences Prague Czech Republic
Institute of Pharmacology and Toxicology University of Würzburg Würzburg Germany
Instituto de Investigación Biomédica de A Coruña AE CICA INIBIC Coruña Spain
Laboratory of Translational Biomedicine University of Southern Santa Catarina UNESC Criciúma Brazil
Mutagenesis Unit Institute for Medical Research and Occupational Health Zagreb Croatia
Toxalim Université de Toulouse INRAE ENVT INP Purpan UPS Toulouse France
Unit of Clinical and Molecular Epidemiology IRCCS San Raffaele Pisana Rome Italy
Zobrazit více v PubMed
Azqueta A, et al. Application of the comet assay in human biomonitoring: an hCOMET perspective. Mutat. Res. 2020;783:108288. doi: 10.1016/j.mrrev.2019.108288. PubMed DOI
Gajski G, et al. The comet assay in animal models: from bugs to whales (part 1, invertebrates) Mutat. Res. 2019;779:82–113. doi: 10.1016/j.mrrev.2019.02.003. PubMed DOI
Gajski G, et al. The comet assay in animal models: from bugs to whales (part 2, vertebrates) Mutat. Res. 2019;781:130–164. doi: 10.1016/j.mrrev.2019.04.002. PubMed DOI
Azqueta A, et al. DNA repair as a human biomonitoring tool: comet assay approaches. Mutat. Res. 2019;781:71–87. doi: 10.1016/j.mrrev.2019.03.002. PubMed DOI
European Standards Committee on Oxidative DNA Damage (ESCODD). Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis. 2002;23:2129–2133. doi: 10.1093/carcin/23.12.2129. PubMed DOI
European Standards Committee on Oxidative DNA Damage (ESCODD). Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic. Biol. Med. 2003;34:1089–1099. doi: 10.1016/S0891-5849(03)00041-8. PubMed DOI
Gedik CM, Collins A. Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J. 2005;19:82–84. doi: 10.1096/fj.04-1767fje. PubMed DOI
Møller P, Möller L, Godschalk RW, Jones GD. Assessment and reduction of comet assay variation in relation to DNA damage: studies from the European Comet Assay Validation Group. Mutagenesis. 2010;25:109–111. doi: 10.1093/mutage/gep067. PubMed DOI
Forchhammer L, et al. Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial. Mutagenesis. 2010;25:113–123. doi: 10.1093/mutage/gep048. PubMed DOI
Johansson C, et al. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay. Mutagenesis. 2010;25:125–132. doi: 10.1093/mutage/gep055. PubMed DOI PMC
Ersson C, et al. An ECVAG inter-laboratory validation study of the comet assay: inter-laboratory and intra-laboratory variations of DNA strand breaks and FPG-sensitive sites in human mononuclear cells. Mutagenesis. 2013;28:279–286. doi: 10.1093/mutage/get001. PubMed DOI
Forchhammer L, et al. Inter-laboratory variation in DNA damage using a standard comet assay protocol. Mutagenesis. 2012;27:665–672. doi: 10.1093/mutage/ges032. PubMed DOI
Godschalk RW, et al. Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories. Mutagenesis. 2014;29:241–249. doi: 10.1093/mutage/geu012. PubMed DOI
Godschalk RW, et al. DNA-repair measurements by use of the modified comet assay: an inter-laboratory comparison within the European Comet Assay Validation Group (ECVAG) Mutat. Res. 2013;757:60–67. doi: 10.1016/j.mrgentox.2013.06.020. PubMed DOI
Azqueta A, et al. Technical recommendations to perform the alkaline standard and enzyme-modified comet assay in human biomonitoring studies. Mutat. Res. 2019;843:24–32. doi: 10.1016/j.mrgentox.2019.04.007. PubMed DOI
Møller P, et al. Searching for assay controls for the Fpg- and hOGG1-modified comet assay. Mutagenesis. 2018;33:9–19. doi: 10.1093/mutage/gex015. PubMed DOI
Møller P, Stopper H, Collins AR. Measurement of DNA damage with the comet assay in high-prevalence diseases: current status and future directions. Mutagenesis. 2020;35:5–18. doi: 10.1093/mutage/geaa011. PubMed DOI
OECD. Test no. 489: in vivo mammalian alkaline comet assay. in OECD Guidelines for the Testing of Chemicals, Section 4 (OECD Publishing, 2016). 10.1787/9789264264885-en
Brazma A, et al. Minimum information about a microarray experiment (MIAME)–toward standards for microarray data. Nat. Genet. 2001;29:365–371. doi: 10.1038/ng1201-365. PubMed DOI
Bustin SA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Gallo V, et al. STrengthening the Reporting of OBservational studies in Epidemiology–Molecular Epidemiology (STROBE-ME): an extension of the STROBE statement. Mutagenesis. 2012;27:17–29. doi: 10.1093/mutage/ger039. PubMed DOI
Collins AR, et al. The comet assay: topical issues. Mutagenesis. 2008;23:143–151. doi: 10.1093/mutage/gem051. PubMed DOI
Koppen G, et al. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis. 2017;32:397–408. doi: 10.1093/mutage/gex002. PubMed DOI
Rojas E, Lorenzo Y, Haug K, Nicolaissen B, Valverde M. Epithelial cells as alternative human biomatrices for comet assay. Front. Genet. 2014;5:386. doi: 10.3389/fgene.2014.00386. PubMed DOI PMC
Azqueta A, Enciso JM, Pastor L, López de Cerain A, Vettorazzi A. Applying the comet assay to fresh vs frozen animal solid tissues: a technical approach. Food Chem. Toxicol. 2019;132:110671. doi: 10.1016/j.fct.2019.110671. PubMed DOI
Al-Salmani K, et al. Evaluation of storage and DNA damage analysis of whole blood by Comet assay. Free Radic. Biol. Med. 2011;51:719–725. doi: 10.1016/j.freeradbiomed.2011.05.020. PubMed DOI
Azqueta A, Langie SA, Slyskova J, Collins AR. Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay—a methodological overview. DNA Repair (Amst.) 2013;12:1007–1010. doi: 10.1016/j.dnarep.2013.07.011. PubMed DOI
Enciso JM, Sánchez O, López de Cerain A, Azqueta A. Does the duration of lysis affect the sensitivity of the in vitro alkaline comet assay? Mutagenesis. 2015;30:21–28. doi: 10.1093/mutage/geu047. PubMed DOI
Enciso JM, et al. Standardisation of the in vitro comet assay: influence of lysis time and lysis solution composition on the detection of DNA damage induced by X-rays. Mutagenesis. 2018;33:25–30. doi: 10.1093/mutage/gex039. PubMed DOI
Karbaschi M, et al. Evaluation of the major steps in the conventional protocol for the alkaline comet assay. Int. J. Mol. Sci. 2019;20:23. doi: 10.3390/ijms20236072. PubMed DOI PMC
Muruzabal D, Langie SAS, Pourrut B, Azqueta A. The enzyme-modified comet assay: enzyme incubation step in 2 vs 12-gels/slide systems. Mutat. Res. 2019;845:402981. doi: 10.1016/j.mrgentox.2018.11.005. PubMed DOI
Forchhammer L, et al. Variation in assessment of oxidatively damaged DNA in mononuclear blood cells by the comet assay with visual scoring. Mutagenesis. 2008;23:223–231. doi: 10.1093/mutage/gen006. PubMed DOI
Azqueta A, Gutzkow KB, Brunborg G, Collins AR. Towards a more reliable comet assay: optimising agarose concentration, unwinding time and electrophoresis conditions. Mutat. Res. 2011;724:41–45. doi: 10.1016/j.mrgentox.2011.05.010. PubMed DOI
Ersson C, Möller L. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments. Mutagenesis. 2011;26:689–695. doi: 10.1093/mutage/ger034. PubMed DOI
Brunborg, G., Rolstadaas, L. & Gutzkow, K. B. Electrophoresis in the comet assay. in Electrophoresis (ed. Boldura, O.-M. Boldura) 10.5772/intechopen.76880 (IntechOpen, 2018).
Sirota NP, et al. Some causes of inter-laboratory variation in the results of comet assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014;770:16–22. doi: 10.1016/j.mrgentox.2014.05.003. PubMed DOI
Olive PL, Banáth JP, Durand RE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat. Res. 1990;122:86–94. doi: 10.2307/3577587. PubMed DOI
Olive PL, Wlodek D, Durand RE, Banáth JP. Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp. Cell Res. 1992;198:259–267. doi: 10.1016/0014-4827(92)90378-L. PubMed DOI
Møller P, et al. On the search for an intelligible comet assay descriptor. Front. Genet. 2014;5:217. PubMed PMC
Møller P, et al. Harmonising measurements of 8-oxo-7,8-dihydro-2′-deoxyguanosine in cellular DNA and urine. Free Radic. Res. 2012;46:541–553. doi: 10.3109/10715762.2011.644241. PubMed DOI
Møller P, Loft S. Statistical analysis of comet assay results. Front. Genet. 2014;5:292. PubMed PMC
Lovell DP, Omori T. Statistical issues in the use of the comet assay. Mutagenesis. 2008;23:171–182. doi: 10.1093/mutage/gen015. PubMed DOI