Phosphorus-deficiency stress in cucumber (Cucumis sativus L.) plants: early detection based on chosen physiological parameters and statistical analyses
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650627
PubMed Central
PMC11609769
DOI
10.32615/ps.2024.005
PII: PS62044
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll fluorescence, confocal microscopy, greenhouse cucumber, leaf area index, multivariate statistical analyses, photosynthetic pigment,
- Publikační typ
- časopisecké články MeSH
Enhancing plant productivity and mitigating the impact of environmental stressors require a thorough understanding of phytomonitoring and physiological features indicative of plant health. This study delves into the response of cucumber plants to phosphorus deficiency employing diverse tools to identify key indicators and unravel the underlying mechanisms. Under phosphorus deficiency, a rapid response in older leaves was observed through the analysis of chlorophyll and carotenoid content. Molecular-level changes in photosynthetic performance were found to be age-dependent, as revealed by multidimensional statistical methods, highlighting the interconnectedness of examined features with the experimental setup timing. This can assist in understanding the long-term fluctuations in traits linked to phosphorus deficiency, facilitating early detection of stress.
Zobrazit více v PubMed
Adobe Systems Inc.: Adobe® RGB (1998) Color Image Encoding. Version 2005-05. Adobe Systems Incorporated, San Jose: 2005. Available at: https://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf.
AOAC: Official Methods of Analysis of AOAC International. 19th Edition. AOAC International, Gaithersburg: 2012.
Bayoumi Y., Abd-Alkarim E., El-Ramady H. et al.: Grafting improves fruit yield of cucumber plants grown under combined heat and soil salinity stresses. – Horticulturae 7: 61, 2021. 10.3390/horticulturae7030061 DOI
Borch K., Bouma T.J., Lynch J.P., Brown K.M.: Ethylene: a regulator of root architectural responses to soil phosphorus availability. – Plant Cell Environ. 22: 425-431, 1999. 10.1046/j.1365-3040.1999.00405.x DOI
Cakmak I., Hengeler C., Marschner H.: Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. – J. Exp. Bot. 45: 1245-1250, 1994. 10.1093/jxb/45.9.1245 DOI
Cetner M.D., Kalaji H.M., Borucki W., Kowalczyk K.: Phosphorus deficiency affects the I-step of chlorophyll a fluorescence induction curve of radish. – Photosynthetica 58: 671-681, 2020. 10.32615/ps.2020.015 DOI
CIE: Colorimetry. 3rd Edition. CIE 015:2004. Pp. 79. International Commission on Illumination, 2004. Available at: https://cie.co.at/publications/colorimetry-3rd-edition.
Ciereszko I., Gniazdowska A., Mikulska M., Rychter A.M.: Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiency. – J. Plant Physiol. 149: 343-348, 1996. 10.1016/S0176-1617(96)80132-5 DOI
Dabu X., Li S., Cai Z. et al.: The effect of potassium on photosynthetic acclimation in cucumber during CO2 enrichment. – Photosynthetica 57: 640-645, 2019. 10.32615/ps.2019.073 DOI
Daneshgar S., Callegari A., Capodaglio A.G., Vaccari D.: The potential phosphorus crisis: resource conservation and possible escape technologies: a review. – Resources 7: 37, 2018. 10.3390/resources7020037 DOI
Duff S.M.G., Sarath G., Plaxton W.C.: The role of acid phosphatases in plant phosphorus metabolism. – Physiol. Plantarum 90: 791-800, 1994. 10.1111/j.1399-3054.1994.tb02539.x DOI
Epstein E.: Silicon: its manifold roles in plants. – Ann. Appl. Biol. 155: 155-160, 2009. 10.1111/j.1744-7348.2009.00343.x DOI
Estaji A., Kalaji H.M., Karimi H.R. et al.: How glycine betaine induces tolerance of cucumber plants to salinity stress? – Photosynthetica 57: 753-761, 2019. 10.32615/ps.2019.053 DOI
Fredeen A.L., Rao I.M., Terry N.: Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. – Plant. Physiol. 89: 225-230, 1989. 10.1104/pp.89.1.225 PubMed DOI PMC
Haushild T., Ciereszko I., Maleszewski S.: Influence of phosphorus deficiency on post-irradiation burst of CO2 from bean (Phaseolus vulgaris L.) leaves. – Photosynthetica 32: 1-9, 1996. https://kramerius.lib.cas.cz/view/uuid:ae9a5e21-da3b-4ec0-9d46-e63db62762bb?page=uuid:5fdce90e-2a2a-4304-879b-d1d417e8e2c3
Horaczek T., Dąbrowski P., Kalaji H.M. et al.: JIP-test as a tool for early detection of the macronutrients deficiency in Miscanthus plants. – Photosynthetica 58: 507-517, 2020. 10.32615/ps.2019.177 DOI
Jacob J., Lawlor D.W.: Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. – J. Exp. Bot. 42: 1003-1011, 1991. 10.1093/jxb/42.8.1003 DOI
Kamerlin S.C.L., Sharma P.K., Prasad R.B., Warshel A.: Why nature really chose phosphate. – Q. Rev. Biophys. 46: 1-132, 2013. 10.1017/S0033583512000157 PubMed DOI PMC
Kautsky H., Hirsch A.: Neue Versuche zur Kohlensäureassimilation. – Naturwissenschaften 19: 964, 1931. 10.1007/BF01516164 DOI
Kleczkowski L.A.: Inhibitors of photosynthetic enzymes/carriers and metabolism. – Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 339-367, 1994. 10.1146/annurev.pp.45.060194.002011 DOI
Kondracka A., Rychter A.M.: The role of Pi recycling processes during photosynthesis in phosphate-deficient bean plants. – J. Exp. Bot. 48: 1461-1468, 1997. 10.1093/jxb/48.7.1461 DOI
Liu B.B., Li M., Li Q.M. et al.: Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. – Photosynthetica 56: 942-952, 2018. 10.1007/s11099-017-0753-9 DOI
Marschner P., Rengel Z.: Nutrient availability in soils. – In: Marschner P. (ed.): Marschner’s Mineral Nutrition of Higher Plants. 3rd Edition. Pp. 315-330. Academic Press, Amsterdam: 2012. 10.1016/B978-0-12-384905-2.00012-1 DOI
Mollier A., Pellerin S.: Maize root system growth and development as influenced by phosphorus deficiency. – J. Exp. Bot. 50: 487-497, 1999. 10.1093/jxb/50.333.487 DOI
Pagliari P.H., Kaiser D.E., Rosen C.J.: Understanding phosphorus in Minnesota soils. University of Minnesota Extension, 2018. Available at: https://extension.umn.edu/phosphorus-and-potassium/understanding-phosphorus-minnesota-soils.
Papageorgiou G., Govindjee G.: Light-induced changes in the fluorescence yield of chlorophyll a in vivo: I. Anacystis nidulans. – Biophys. J. 8: 1299-1315, 1968. 10.1016/S0006-3495(68)86557-9 PubMed DOI PMC
Raghothama K.G.: Phosphate acquisition. – Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 665-693, 1999. 10.1146/annurev.arplant.50.1.665 PubMed DOI
Raghothama K.G.: Phosphate transport and signaling. – Curr. Opin. Plant Biol. 3: 182-187, 2000. https://www.sciencedirect.com/science/article/pii/S1369526600800631 PubMed
Rychter A.M., Mikulska M.: The relationship between status and cyanide-resistant respiration in bean roots. – Physiol. Plantarum 79: 663-667, 1990. 10.1111/j.1399-3054.1990.tb00041.x PubMed DOI
Saleque M.A., Abedin M.J., Ahmed Z.U. et al.: Influences of phosphorus deficiency on the uptake of nitrogen, potassium, calcium, magnesium, sulfur, and zinc in lowland rice varieties. – J. Plant Nutr. 24: 1621-1632, 2001. 10.1081/PLN-100106025 DOI
Schanda J.: Colorimetry: Understanding the CIE System. Pp. 459. John Wiley & Sons, Hoboken: 2007. 10.1002/9780470175637 DOI
Sieczko L., Dąbrowski P., Kowalczyk K. et al.: Early detection of phosphorus deficiency stress in cucumber at the cellular level using chlorophyll fluorescence signals. – J. Water Land Dev. 2022: 176-186, 2022. 10.24425/jwld.2022.143734 DOI
Silva O.N., Lobato A.K.S., Ávila F.W. et al.: Silicon-induced increase in chlorophyll is modulated by the leaf water potential in two water-deficient tomato cultivars. – Plant Soil Environ. 58: 481-486, 2012. 10.17221/213/2012-PSE DOI
Taiz L., Zeiger E., Møller I.M., Murphy A.: Plant Physiology and Development. 6th Edition. Pp. 761. Sinauer Associates Inc., Sunderland: 2014.
Tseng Y.-C., Chu S.-W.: High spatio-temporal-resolution detection of chlorophyll fluorescence dynamics from a single chloroplast with confocal imaging fluorometer. – Plant Methods 13: 43, 2017. 10.1186/s13007-017-0194-2 PubMed DOI PMC
Usuda H., Shimogawara K.: Phosphate deficiency in maize. I. Leaf phosphate status, growth, photosynthesis and carbon partitioning. – Plant Cell Physiol. 32: 497-504, 1991. 10.1093/oxfordjournals.pcp.a078107 DOI
Vance C.P., Uhde-Stone C., Allan D.L.: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. – New Phytol. 157: 423-447, 2003. 10.1046/j.1469-8137.2003.00695.x PubMed DOI
Yan N., Zhang Y.L., Xue H.M. et al.: Changes in plant growth and photosynthetic performance of Zizania latifolia exposed to different phosphorus concentrations under hydroponic condition. – Photosynthetica 53: 630-635, 2015. 10.1007/s11099-015-0149-7 DOI
Yue X.L., Liu X.F., Fang S.Z.: Influence of nitrogen and phosphorus additions on parameters of photosynthesis and chlorophyll fluorescence in Cyclocarya paliurus seedlings. – Photosynthetica 61: 318-327, 2023. 10.32615/ps.2023.023 DOI