Effect of cryptochrome 1 deficiency and spectral composition of light on photosynthetic processes in A. thaliana under high-intensity light exposure
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650628
PubMed Central
PMC11609765
DOI
10.32615/ps.2024.009
PII: PS62071
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, cryptochrome, high-intensity light, photosynthesis, pro-/antioxidant balance,
- Publikační typ
- časopisecké články MeSH
The role of cryptochrome 1 in photosynthetic processes and pro-/antioxidant balance in the Arabidopsis thaliana plants was studied. Wild type (WT) and hy4 mutant deficient in cryptochrome 1 grown for 20 d under red (RL, 660 nm) and blue (BL, 460 nm) light at an RL:BL = 4:1 ratio were kept for 3 d in different lights: RL:BL = 4:1, RL:BL:GL = 4:1:0.3 (GL - green light, 550 nm), and BL, then were exposed to high irradiance (4 h). Activity of PSII and the rate of photosynthesis in WT and hy4 decreased under the high irradiance in all spectral variants but under BL stronger decrease in the activity was found in the hy4 mutant than in WT. We assumed that lowered resistance of photosynthetic apparatus in the hy4 mutant may be associated with the low activity of the main antioxidant enzymes and reduced content of low-molecular-mass antioxidants in the mutant compared to the WT.
Zobrazit více v PubMed
Ahmad M., Cashmore A.R.: HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. – Nature 366: 162-166, 1993. 10.1038/366162a0 PubMed DOI
Allakhverdiev S.I., Kreslavski V.D., Zharmukhamedov S.K. et al.: Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. – Biochemistry-Moscow 81: 201-212, 2016. 10.1134/S0006297916030020 PubMed DOI
Balakhnina T.I., Nadezhkina E.S.: Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. – Russ. J. Plant Physiol. 64: 215-223, 2017. 10.1134/S1021443717010022 DOI
Carvalho R.F., Campos M.L., Azevedo R.A.: The role of phytochrome in stress tolerance. – J. Integr. Plant Biol. 53: 920-929, 2011. 10.1111/j.1744-7909.2011.01081.x PubMed DOI
Chaves I., Pokorny R., Byrdin M. et al.: The cryptochromes: blue light photoreceptors in plants and animals. – Annu. Rev. Plant Biol. 62: 335-364, 2011. 10.1146/annurev-arplant-042110-103759 PubMed DOI
D'Amico-Damião V., Carvalho R.F.: Cryptochrome-related abiotic stress responses in plants. – Front. Plant Sci. 9: 1897, 2018. 10.3389/fpls.2018.01897 PubMed DOI PMC
Fantini E., Sulli M., Zhang L. et al.: Pivotal roles of cryptochromes 1a and 2 in tomato development and physiology. – Plant Physiol. 179: 732-748, 2019. 10.1104/pp.18.00793 PubMed DOI PMC
Folta K.M., Maruhnich S.A.: Green light: a signal to slow down or stop. – J. Exp. Bot. 58: 3099-3111, 2007. 10.1093/jxb/erm130 PubMed DOI
Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. – Russ. J. Plant Physiol. 63: 869-893, 2016. 10.1134/S1021443716050058 DOI
Havaux M., Kloppstech K.: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. – Planta 213: 953-966, 2001. 10.1007/s004250100572 PubMed DOI
Khudyakova A.Yu., Kreslavski V.D., Shmarev A.N. et al.: Effect of deficiency of cryptochromes 1 and 2 on photosynthetic activity and pro-/antioxidant balance in Arabidopsis thaliana leaves under the action of UV-B. – Russ. J. Plant Physiol. 69: 39, 2022. 10.1134/S1021443722010083 DOI
Kleine T., Kindgren P., Benedict C. et al.: Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. – Plant Physiol. 144: 1391-1406, 2007. 10.1104/pp.107.098293 PubMed DOI PMC
Kong S.-G., Okajima K.: Diverse photoreceptors and light responses in plants. – J. Plant Res. 129: 111-114, 2016. 10.1007/s10265-016-0792-5 PubMed DOI
Kreslavski V., Khudyakova A., Kosobryukhov A. et al.: Impact of additional green light and deficit in cryptochrome 1 on photosynthetic activity and pro-/antioxidant balance in Arabidopsis thaliana. – Photosynthetica 61: 215-224, 2023. 10.32615/ps.2023.009 DOI
Kreslavski V.D., Carpentier R., Klimov V.V., Allakhverdiev S.I.: Transduction mechanisms of photoreceptor signals in plant cells. – J. Photoch. Photobio. C 10: 63-80, 2009. 10.1016/j.jphotochemrev.2009.04.001 DOI
Kreslavski V.D., Khudyakova A.Yu., Strokina V.V. et al.: Impact of high irradiance and UV-B on the photosynthetic activity, pro-/antioxidant balance and expression of light-activated genes in Arabidopsis thaliana hy4 mutants grown under blue light. – Plant Physiol. Biochem. 167: 153-162, 2021. 10.1016/j.plaphy.2021.07.030 PubMed DOI
Kreslavski V.D., Lankin A.V., Vasilyeva G.K. et al.: Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. – Plant Physiol. Biochem. 81: 135-142, 2014. 10.1016/j.plaphy.2014.02.020 PubMed DOI
Kreslavski V.D., Los D.A., Schmitt F.-J. et al.: The impact of the phytochromes on photosynthetic processes. – BBA-Bioenergetics 1859: 400-408, 2018. 10.1016/j.bbabio.2018.03.003 PubMed DOI
Kreslavski V.D., Strokina V.V., Pashkovskiy P.P. et al.: Deficiencies in phytochromes A and B and cryptochrome 1 affect the resistance of the photosynthetic apparatus to high-intensity light in Solanum lycopersicum. – J. Photoch. Photobio. B 210: 111976, 2020. 10.1016/j.jphotobiol.2020.111976 PubMed DOI
Li L., Tong Y.-X., Lu J.-L. et al.: Morphology, photosynthetic traits, and nutritional quality of lettuce plants as affected by green light substituting proportion of blue and red light. – Front. Plant Sci. 12: 627311, 2021. 10.3389/fpls.2021.627311 PubMed DOI PMC
Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. – Method. Enzymol. 148: 350-382, 1987. 10.1016/0076-6879(87)48036-1 DOI
Lin C., Todo T.: The cryptochromes. – Genome Biol. 6: 220, 2005. 10.1186/gb-2005-6-5-220 PubMed DOI PMC
Lin C., Yang H., Guo H. et al.: Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. – PNAS 95: 2686-2690, 1998. 10.1073/pnas.95.5.2686 PubMed DOI PMC
Liu B., Yang Z., Gomez A. et al.: Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. – J. Plant Res. 129: 137-148, 2016. 10.1007/s10265-015-0782-z PubMed DOI PMC
Liu H., Liu B., Zhao C. et al.: The action mechanisms of plant cryptochromes. – Trends Plant Sci. 16: 684-691, 2011. 10.1016/j.tplants.2011.09.002 PubMed DOI PMC
Liu J., Lu Y., Hua W., Last R.L.: A new light on photosystem II maintenance in oxygenic photosynthesis. – Front. Plant Sci. 10: 975, 2019. 10.3389/fpls.2019.00975 PubMed DOI PMC
Liu M., Pan T., Allakhverdiev S.I. et al.: Crop halophytism: an environmentally sustainable solution for global food security. – Trends Plant Sci. 25: 630-634, 2020. 10.1016/j.tplants.2020.04.008 PubMed DOI
Mao J., Zhang Y.-C., Sang Y. et al.: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. – PNAS 102: 12270-12275, 2005. 10.1073/pnas.0501011102 PubMed DOI PMC
Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. – Plant Cell Physiol. 22: 867-880, 1981. 10.1093/oxfordjournals.pcp.a076232 DOI
Nishiyama Y., Allakhverdiev S.I., Murata N.: A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. – BBA-Bioenergetics 1757: 742-749, 2006. 10.1016/j.bbabio.2006.05.013 PubMed DOI
Powles S.B.: Photoinhibition of photosynthesis induced by visible light. – Annu. Rev. Plant Physiol. 35: 15-44, 1984. 10.1146/annurev.pp.35.060184.000311 DOI
Re R., Pellegrini N., Proteggente A. et al.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. – Free Radical Bio. Med. 26: 1231-1237, 1999. 10.1016/S0891-5849(98)00315-3 PubMed DOI
Ruban A.V.: Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. – Plant Physiol. 170: 1903-1916, 2016. 10.1104/pp.15.01935 PubMed DOI PMC
Sellaro R., Crepy M., Trupkin S.A. et al.: Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis. – Plant Physiol. 154: 401-409, 2010. 10.1104/pp.110.160820 PubMed DOI PMC
Simkin A.J., Kapoor L., Doss C.G.P. et al.: The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. – Photosynth. Res. 152: 23-42, 2022. 10.1007/s11120-021-00892-6 PubMed DOI
Smith H., Whitelam G.C.: The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. – Plant Cell Environ. 20: 840-844, 1997. 10.1046/j.1365-3040.1997.d01-104.x DOI
Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B 104: 236-257, 2011. 10.1016/j.jphotobiol.2010.12.010 PubMed DOI
Takahashi S., Badger M.R.: Photoprotection in plants: a new light on photosystem II damage. – Trends Plant Sci. 16: 53-60, 2011. 10.1016/j.tplants.2010.10.001 PubMed DOI
Voitsekhovskaja O.V.: Phytochromes and other (photo)receptors of information in plants. – Russ. J. Plant Physiol. 66: 351-364, 2019. 10.1134/S1021443719030154 DOI
Walters R.G., Rogers J.J.M., Shephard F., Horton P.: Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. – Planta 209: 517-527, 1999. 10.1007/s004250050756 PubMed DOI
Wang Y., Folta K.M.: Contributions of green light to plant growth and development. – Am. J. Bot. 100: 70-78, 2013. 10.3732/ajb.1200354 PubMed DOI