The resistance of Solanum lycopersicum photosynthetic apparatus to high-intensity blue light is determined mainly by the cryptochrome 1 content
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40270912
PubMed Central
PMC12012423
DOI
10.32615/ps.2024.043
PII: PS63001
Knihovny.cz E-zdroje
- Klíčová slova
- Chl a fluorescence, blue irradiation, high irradiance, photoinhibition, photosynthetic activity, tomato,
- MeSH
- antioxidancia metabolismus MeSH
- fotosyntéza * účinky záření fyziologie MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- kryptochromy * metabolismus genetika MeSH
- modré světlo MeSH
- mutace MeSH
- rostlinné proteiny * metabolismus genetika MeSH
- Solanum lycopersicum * účinky záření metabolismus fyziologie genetika MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- fotosystém II (proteinový komplex) MeSH
- kryptochromy * MeSH
- rostlinné proteiny * MeSH
The effects of deficiency of cryptochrome 1 (CRY1), phytochrome B2 (phyB2) and the photoreceptor signalling DET-1 protein (hp-2 mutant) on photosynthesis and pro-/antioxidant balance in Solanum lycopersicum exposed to high-intensity blue light [HIBL, 72 h, 500/1,000 μmol(photon) m-2 s-1] were studied. Noticeable photoinhibition of photosynthesis and PSII was found in all these variants. However, the greatest decrease in photosynthesis and PSII activity was observed in the cry1 mutant. The difference among the other options was less pronounced. This low resistance of the cry1 mutant to HIBL is associated with reduced photosynthetic pigments, phenols, and anthocyanins. It appears that under HIBL, CRY1 and, to a lesser extent, phyB2 are required to maintain photosynthesis and antioxidant defence, mitigating blue light-induced oxidative stress. This study expands our understanding of the defence functions of CRY1 and highlights its importance in adapting the photosynthetic apparatus to HIBL.
Faculty of Engineering and Natural Sciences Bahcesehir University Istanbul Turkey
Institute of Basic Biological Problems Russian Academy of Sciences 142290 Pushchino Russia
K A Timiryazev Institute of Plant Physiology Russian Academy of Sciences 127276 Moscow Russia
Zobrazit více v PubMed
Abramova A., Vereshchagin M., Kulkov L. et al.: Potential role of phytochromes A and B and cryptochrome 1 in the adaptation of Solanum lycopersicum to UV-B radiation. – Int. J. Mol. Sci. 24: 13142, 2023. 10.3390/ijms241713142 PubMed DOI PMC
Aro E.-M., Virgin I., Andersson B.: Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. – BBA-Bioenergetics 1143: 113-134, 1993. 10.1016/0005-2728(93)90134-2 PubMed DOI
Ashikhmin A., Bolshakov M., Pashkovskiy P. et al.: The adaptive role of carotenoids and anthocyanins in Solanum lycopersicum pigment mutants under high irradiance. – Cells 12: 2569, 2023. 10.3390/cells12212569 PubMed DOI PMC
Ashikhmin A., Pashkovskiy P., Kosobryukhov A. et al.: The role of pigments and cryptochrome 1 in the adaptation of Solanum lycopersicum photosynthetic apparatus to high-intensity blue light. – Antioxidants 13: 605, 2024. 10.3390/antiox13050605 PubMed DOI PMC
Bhutta M.A., Bibi A., Ahmad N.H. et al.: Molecular mechanisms of photoinhibition in plants: A review. – Sarhad J. Agric. 39: 340-345, 2023.
Chaves I., Pokorny R., Byrdin M. et al.: The cryptochromes: blue light photoreceptors in plants and animals. – Annu. Rev. Plant Biol. 62: 335-364, 2011. 10.1146/annurev-arplant-042110-103759 PubMed DOI
Foyer C.H., Ruban A.V., Noctor G.: Viewing oxidative stress through the lens of oxidative signalling rather than damage. – Biochem. J. 474: 877-883, 2017. 10.1042/BCJ20160814 PubMed DOI PMC
Goltsev V.N., Kalaji H.M., Paunov M. et al.: Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. – Russ. J. Plant Physiol. 63: 869-893, 2016. 10.1134/S1021443716050058 DOI
Gupta A.S., Webb R.P., Holaday A.S., Allen R.D.: Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). – Plant Physiol. 103: 1067-1073, 1993. 10.1104/pp.103.4.1067 PubMed DOI PMC
Jiao Y., Yang H., Ma L. et al.: A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. – Plant Physiol. 133: 1480-1493, 2003. 10.1104/pp.103.029439 PubMed DOI PMC
Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. – Acta Physiol. Plant. 38: 102, 2016. 10.1007/s11738-016-2113-y DOI
Khudyakova A., Kreslavski V., Kosobryukhov A. et al.: Effect of cryptochrome 1 deficiency and spectral composition of light on photosynthetic processes in A. thaliana under high-intensity light exposure. – Photosynthetica 62: 71-78, 2024. 10.32615/ps.2024.009 PubMed DOI PMC
Kleine T., Kindgren P., Benedict C. et al.: Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. – Plant Physiol. 144: 1391-1406, 2007. 10.1104/pp.107.098293 PubMed DOI PMC
Klughammer C., Schreiber U.: Saturation pulse method for assessment of energy conversion in PS I. – PAM Appl. Notes 1: 11-14, 2008. https://www.walz.com/files/downloads/pan/PAN07002.pdf
Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. – Photosynth. Res. 79: 209-218, 2004. 10.1023/B:PRES.0000015391.99477.0d PubMed DOI
Kreslavski V.D., Lankin A.V., Vasilyeva G.K. et al.: Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. – Plant Physiol. Biochem. 81: 135-142, 2014. 10.1016/j.plaphy.2014.02.020 PubMed DOI
Kreslavski V.D., Los D.A., Schmitt F.-J. et al.: The impact of the phytochromes on photosynthetic processes. – BBA-Bioenergetics 1859: 400-408, 2018. 10.1016/j.bbabio.2018.03.003 PubMed DOI
Levin I., De Vos C.H.R., Tadmor Y. et al.: High pigment tomato mutants – more than just lycopene (a review). – Israel J. Plant Sci. 54: 179-190, 2006. https://www.researchgate.net/publication/259184640_High_pigment_tomato_mutants_-_More_than_just_lycopene_a_review
Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. – Method. Enzymol. 148: 350-382, 1987. 10.1016/0076-6879(87)48036-1 DOI
Liu C.-C., Chi C., Jin L.-J. et al.: The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. – Plant Cell Environ. 41: 1762-1775, 2018. 10.1111/pce.13171 PubMed DOI
Liu Y., Roof S., Ye Z. et al.: Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. – PNAS 101: 9897-9902, 2004. 10.1073/pnas.0400935101 PubMed DOI PMC
Maehly A.C., Chance B.: The assay of catalases and peroxidases. – In: Glick D. (ed.): Methods of Biochemical Analysis. Pp. 357-424. Interscience Publishers, New York: 1954. 10.1002/9780470110171.ch14 PubMed DOI
Mustilli A.C., Fenzi F., Ciliento R. et al.: Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. – Plant Cell 11: 145-157, 1999. 10.1105/tpc.11.2.145 PubMed DOI PMC
Ponnu J., Hoecker U.: Signalling mechanisms by Arabidopsis cryptochromes. – Front. Plant Sci. 13: 844714, 2022. 10.3389/fpls.2022.844714 PubMed DOI PMC
Powles S.B.: Photoinhibition of photosynthesis induced by visible light. – Annu. Rev. Plant Biol. 35: 15-44, 1984. 10.1146/annurev.pp.35.060184.000311 DOI
Ruban A.V.: Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. – Plant Physiol. 170: 1903-1916, 2016. 10.1104/pp.15.01935 PubMed DOI PMC
Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 279-319. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9_11 DOI
Singleton V.L., Rossi J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. – Am. J. Enol. Vitic. 16: 144-158, 1965. 10.5344/ajev.1965.16.3.144 DOI
Solovchenko A.: Buildup of screening pigments and resistance of plants to photodamage. – In: Solovchenko A. (ed.): Photoprotection in Plants: Optical Screening-Based Mechanisms. Springer Series in Biophysics. Pp. 143-163. Springer, Berlin-Heidelberg: 2010. 10.1007/978-3-642-13887-4_7 DOI
Solovchenko A.E., Merzlyak M.N.: Screening of visible and UV radiation as a photoprotective mechanism in plants. – Russ. J. Plant Physiol. 55: 719-737, 2008. 10.1134/S1021443708060010 DOI
Stetsenko L.A., Pashkovskiy P.P., Voloshin R.A. et al.: Role of anthocyanin and carotenoids in the adaptation of the photosynthetic apparatus of purple- and green-leaved cultivars of sweet basil (Ocimum basilicum) to high-intensity light. – Photosynthetica 58: 890-901, 2020. 10.32615/ps.2020.048 DOI
Su J., Liu B., Liao J. et al.: Coordination of cryptochrome and phytochrome signals in the regulation of plant light responses. – Agronomy 7: 25, 2017. 10.3390/agronomy7010025 DOI
Tyystjärvi E.: Photoinhibition of Photosystem II. – In: Kwang W.J. (ed.): International Review of Cell and Molecular Biology. Vol. 300. Pp. 243-303. Academic Press, Amsterdam: 2013. 10.1016/B978-0-12-405210-9.21001-1 PubMed DOI
Wang X., Wang Q., Han Y.-J. et al.: A CRY–BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis. – Plant J. 92: 426-436, 2017. 10.1111/tpj.13664 PubMed DOI PMC
Zavafer A., Mancilla C.: Concepts of photochemical damage of Photosystem II and the role of excessive excitation. – J. Photoch. Photobio. C 47: 100421, 2021. 10.1016/j.jphotochemrev.2021.100421 DOI
Zhang L.- X., Li S.- X., Zhang H., Liang Z.-S.: Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. – J. Agron. Crop Sci. 193: 387-397, 2007. 10.1111/j.1439-037X.2007.00276.x DOI