Leaf structure and photosynthesis in Populus alba under naturally fluctuating environments
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39650769
PubMed Central
PMC11558500
DOI
10.32615/ps.2022.012
PII: PS60240
Knihovny.cz E-zdroje
- Klíčová slova
- Populus alba, fluctuating conditions, photoinhibition, photosynthesis, plasticity,
- Publikační typ
- časopisecké články MeSH
The ability to modulate photosynthesis is essential for plants to adapt to fluctuating growing conditions. Populus species show high tolerance to various and highly variable environments. To understand their response strategies against fluctuating environments, this study investigated the morphological and physiological differences of white poplar (Populus alba) leaves when grown in a phytotron, glasshouse, and field. Our results show that the palisade cells were elongated in the field, which would enhance intercellular CO2 exchange. Photosynthetic capacity was the highest in the field leaves, as shown by higher electron transport rates (1.8 to 6.5 times) and carbon assimilation rates (2.7 to 4.2 times). The decrease of PSI acceptor-side limitation and increase of PSI donor-side limitation suggests changes in PSI redox status may contribute to photoprotection. This plasticity of white poplar allows adjusting its structure and photosynthesis under fluctuating conditions, which may partly enable its outstanding tolerance against environmental changes.
State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry 100091 Beijing China
University of Chinese Academy of Sciences 100049 Beijing China
Zobrazit více v PubMed
Ahmad P., Jaleel C.A., Salem M.A. et al.: Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. – Crit. Rev. Biotechnol. 30: 161-175, 2010. https://www.tandfonline.com/doi/full/10.3109/07388550903524243 PubMed DOI
Ahmad P., Tripathi D.K., Deshmukh R. et al.: Revisiting the role of ROS and RNS in plants under changing environment. – Environ. Exp. Bot. 161: 1-3, 2019. https://www.sciencedirect.com/science/article/abs/pii/S0098847219302163?via%3Dihub
Allahverdiyeva Y., Suorsa M., Tikkanen M., Aro E.-M.: Photoprotection of photosystems in fluctuating light intensities. – J. Exp. Bot. 66: 2427-2436, 2015. PubMed
Allakhverdiev S.I.: Optimising photosynthesis for environmental fitness. – Funct. Plant Biol. 47: iii-vii, 2020. https://www.publish.csiro.au/fp/FPv47n11_FO PubMed
Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. https://www.annualreviews.org/doi/10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Bigras F.J., Bertrand A.: Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth. – Tree Physiol. 26: 875-888, 2006. https://academic.oup.com/treephys/article/26/7/875/1644093 PubMed
Bréhélin C., Kessler F., van Wijk K.J.: Plastoglobules: versatile lipoprotein particles in plastids. – Trends Plant Sci. 12: 260-266, 2007. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(07)00098-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138507000982%3Fshowall%3Dtrue PubMed
Brestic M., Yang X., Li X., Allakhverdiev S.I.: Crop photosynthesis for the twenty-first century. – Photosynth. Res. 150: 1-3, 2021. https://link.springer.com/article/10.1007/s11120-021-00869-5 PubMed DOI
Brestic M., Zivcak M., Hauptvogel P. et al.: Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. – Photosynth. Res. 136: 245-255, 2018. https://link.springer.com/article/10.1007/s11120-018-0486-z PubMed DOI
Brundu G., Lupi R., Zapelli I. et al.: The origin of clonal diversity and structure of Populus alba in Sardinia: Evidence from nuclear and plastid microsatellite markers. – Ann. Bot.-London 102: 997-1006, 2008. https://academic.oup.com/aob/article/102/6/997/105664 PubMed PMC
Demmig-Adams B., Adams III W.W.: An integrative approach to photoinhibition and photoprotection of photosynthesis. – Environ. Exp. Bot. 154: 1-3, 2018. https://www.sciencedirect.com/science/article/abs/pii/S0098847218307019?via%3Dihub
Demmig-Adams B., Cohu C.M., Muller O., Adams III W.W.: Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. – Photosynth. Res. 113: 75-88, 2012. https://link.springer.com/article/10.1007/s11120-012-9761-6 PubMed DOI
Demmig-Adams B., Muller O., Stewart J.J. et al.: Chloroplast thylakoid structure in evergreen leaves employing strong thermal energy dissipation. – J. Photoch. Photobio. B 152: 357-366, 2015. https://www.sciencedirect.com/science/article/abs/pii/S1011134415000913?via%3Dihub PubMed
Dlugos D.M., Collins H., Bartelme E.M., Drenovsky R.E.: The non-native plant Rosa multiflora expresses shade avoidance traits under low light availability. – Am. J. Bot. 102: 1323-1331, 2015. https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.3732/ajb.1500115 PubMed DOI
Ensminger I., Schmidt L., Lloyd J.: Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions. – New Phytol. 177: 428-442, 2008. https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2007.02273.x PubMed DOI
Evans J.R., von Caemmerer S., Setchell B.A., Hudson G.S.: The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. – Funct. Plant Biol. 21: 475-495, 1994. https://www.publish.csiro.au/fp/PP9940475
Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. – Planta 149: 78-90, 1980. https://link.springer.com/article/10.1007/BF00386231 PubMed DOI
Flexas J., Ribas-Carbó M., Diaz-Espejo A. et al.: Mesophyll conductance to CO2: current knowledge and future prospects. – Plant Cell Environ. 31: 602-621, 2008. PubMed
Fristedt R., Trotta A., Suorsa M. et al.: PSB33 sustains photosystem II D1 protein under fluctuating light conditions. – J. Exp. Bot. 68: 4281-4293, 2017. https://academic.oup.com/jxb/article/68/15/4281/4037235 PubMed PMC
Havaux M., Eymery F., Porfirova S. et al.: Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. – Plant Cell 17: 3451-3469, 2005. https://academic.oup.com/plcell/article/17/12/3451/6114759 PubMed PMC
Hodges D.M., DeLong J.M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. – Planta 207: 604-611, 1999. https://link.springer.com/article/10.1007/s004250050524 PubMed DOI
Hozain M.I., Salvucci M.E., Fokar M., Holaday S.A.: The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties. – Tree Physiol. 30: 32-44, 2010. https://academic.oup.com/treephys/article/30/1/32/1645491 PubMed
Huang W., Hu H., Zhang S.B.: Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species. – J. Photoch. Photobio. B 219: 112203, 2021. https://www.sciencedirect.com/science/article/abs/pii/S1011134421000828?via%3Dihub PubMed
Huang W., Zhang S.B., Cao K.F.: Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. – Plant Cell Physiol. 51: 1922-1928, 2010. https://academic.oup.com/pcp/article/51/11/1922/1850980 PubMed
Hughes N.M., Burkey K.O., Cavender-Bares J., Smith W.K.: Xanthophyll cycle pigment and antioxidant profiles of winter – red (anthocyanic) and winter – green (acyanic) angiosperm evergreen species. – J. Exp. Bot. 63: 1895-1905, 2012. https://academic.oup.com/jxb/article/63/5/1895/525718 PubMed
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 151. IPCC, Geneva 2014. https://www.ipcc.ch/report/ar5/syr/
Kirchhoff H.: Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts. – Philos. T. Roy. Soc. B 369: 20130225, 2014. https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0225 PubMed DOI PMC
Kirchhoff H.: Chloroplast ultrastructure in plants. – New Phytol. 223: 565-574, 2019. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.15730 PubMed DOI
Kohli S.K., Khanna K., Bhardwaj R. et al.: Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. – Antioxidants 8: 641, 2019. https://www.mdpi.com/2076-3921/8/12/641 PubMed PMC
Kono M., Yamori W., Suzuki Y., Terashima I.: Photoprotection of PSI by far-red light against the fluctuating light-induced photoinhibition in Arabidopsis thaliana and field-grown plants. – Plant Cell Physiol. 58: 35-45, 2017. https://academic.oup.com/pcp/article/58/1/35/2948616 PubMed
Korotaeva N., Romanenko A., Suvorova G. et al.: Seasonal changes in the content of dehydrins in mesophyll cells of common pine needles. – Photosynth. Res. 124: 159-169, 2015. https://link.springer.com/article/10.1007/s11120-015-0112-2 PubMed DOI
Kreslavski V.D., Brestic M., Zharmukhamedov S.K. et al.: Mechanisms of inhibitory effects of polycyclic aromatic hydrocarbons in photosynthetic primary processes in pea leaves and thylakoid preparations. – Plant Biol. 19: 683-688, 2017. PubMed
Li L., Aro E.-M., Millar A.H.: Mechanisms of photodamage and protein turnover in photoinhibition. – Trends Plant Sci. 23: 667-676, 2018. https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30109-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138518301092%3Fshowall%3Dtrue PubMed
Li Z., Wakao S., Fischer B.B., Niyogi K.K.: Sensing and responding to excess light. – Annu. Rev. Plant Biol. 60: 239-260, 2009. https://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.58.032806.103844 PubMed DOI
Liu Y.-J., Wang X.-R., Zeng Q.-Y.: De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River basin in China. – Sci. China Life Sci. 62: 609-618, 2019. https://link.springer.com/article/10.1007/s11427-018-9455-2 PubMed DOI
Lundell R., Saarinen T., Åström H., Hänninen H.: The boreal dwarf shrubVaccinium vitis-idaea retains its capacity for photosynthesis through the winter. – Botany 86: 491-500, 2008. https://cdnsciencepub.com/doi/10.1139/B08-022 DOI
Morales A., Kaiser E.: Photosynthetic acclimation to fluctuating irradiance in plants. – Front. Plant Sci. 11: 268, 2020. https://www.frontiersin.org/articles/10.3389/fpls.2020.00268/full PubMed DOI PMC
Müller A., Leuschner C., Horna V., Zhang C.: Photosynthetic characteristics and growth performance of closely related aspen taxa: On the systematic relatedness of the Eurasian Populus tremula and the North American P. tremuloides. – Flora 207: 87-95, 2012. https://www.sciencedirect.com/science/article/abs/pii/S0367253011001782?via%3Dihub
Nikkanen L., Toivola J., Trotta A. et al.: Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. – Plant Direct 2: e00093, 2018. https://onlinelibrary.wiley.com/doi/10.1002/pld3.93 PubMed DOI PMC
Pérez-Llorca M., Casadesús A., Müller M., Munné-Bosch S.: Leaf orientation as part of the leaf developmental program in the semi-deciduous shrub, Cistus albidus L.: Diurnal, positional, and photoprotective effects during winter. – Front. Plant Sci. 10: 767, 2019. https://www.frontiersin.org/articles/10.3389/fpls.2019.00767/full PubMed DOI PMC
Pfündel E., Klughammer C., Schreiber U.: Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. – PAM Application Notes 1: 21-24, 2008. https://www.walz.com/files/downloads/pan/PAN07005.pdf
Saxe H., Cannell M.G.R., Johnsen Ø. et al.: Tree and forest functioning in response to global warming. – New Phytol. 149: 369-399, 2002. https://nph.onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2001.00057.x PubMed DOI
Schumann T., Paul S., Melzer M. et al.: Plant growth under natural light conditions provides highly flexible short-term acclimation properties toward high light stress. – Front. Plant Sci. 8: 681, 2017. https://www.frontiersin.org/articles/10.3389/fpls.2017.00681/full PubMed DOI PMC
Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. – Plant Cell Environ. 30: 1035-1040, 2007. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01710.x PubMed DOI
Shikanai T., Yamamoto H.: Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. – Mol. Plant 10: 20-29, 2017. https://www.cell.com/molecular-plant/fulltext/S1674-2052(16)30165-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1674205216301654%3Fshowall%3Dtrue PubMed
Stefanski A., Bermudez R., Sendall K.M. et al.: Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open-air experimental warming and reduced rainfall in a southern boreal forest. – Glob. Change Biol. 26: 746-759, 2020. https://onlinelibrary.wiley.com/doi/10.1111/gcb.14805 PubMed DOI
Thomas R.B., Strain B.R.: Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. – Plant Physiol. 96: 627-634, 1991. https://academic.oup.com/plphys/article/96/2/627/6086570 PubMed PMC
Tosens T., Niinemets Ü., Vislap V. et al.: Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. – Plant Cell Environ. 35: 839-856, 2012. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2011.02457.x PubMed DOI
Tóth V.R., Mészáros I., Veres S., Nagy J.: Effects of the available nitrogen on the photosynthetic activity and xanthophyll cycle pool of maize in field. – J. Plant Physiol. 159: 627-634, 2002. https://www.sciencedirect.com/science/article/abs/pii/S0176161704702722?via%3Dihub
Velitchkova M., Popova A.V., Faik A. et al.: Low temperature and high light dependent dynamic photoprotective strategies in Arabidopsis thaliana. – Physiol. Plantarum 170: 93-108, 2020. https://onlinelibrary.wiley.com/doi/10.1111/ppl.13111 PubMed DOI
Vidi P.-A., Kanwischer M., Baginsky S. et al.: Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. – J. Biol. Chem. 281: 11225-11234, 2006. https://www.jbc.org/article/S0021-9258(19)56301-3/fulltext PubMed
Wada S., Yamamoto H., Suzuki Y. et al.: Flavodiiron protein substitutes for cyclic electron flow without competing CO2 assimilation in rice. – Plant Physiol. 176: 1509-1518, 2018. https://academic.oup.com/plphys/article/176/2/1509/6117236 PubMed PMC
Ware M.A., Giovagnetti V., Belgio E., Ruban A.V.: PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. – J. Photoch. Photobio. B 152: 301-307, 2015. https://www.sciencedirect.com/science/article/abs/pii/S1011134415002353?via%3Dihub PubMed
Way D.A., Pearcy R.W.: Sunflecks in trees and forests: from photosynthetic physiology to global change biology. – Tree Physiol. 32: 1066-1081, 2012. https://academic.oup.com/treephys/article/32/9/1066/1651928 PubMed
Wellburn A.R., Lichtenthaler H.: Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. – In: Sybesma C. (ed.): Advances in Photosynthesis Research. Advances in Agricultural Biotechnology. Vol. 2. Pp. 9-12. Springer, Dordrecht: 1984. https://link.springer.com/chapter/10.1007%2F978-94-017-6368-4_3
Yamamoto H., Shikanai T.: PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. – Plant Physiol. 179: 588-600, 2019. https://academic.oup.com/plphys/article/179/2/588/6116468 PubMed PMC
Yamamoto H., Takahashi S., Badger M.R., Shikanai T.: Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. – Nat. Plants 2: 16012, 2016. PubMed
Yang Q., Blanco N.E., Hermida-Carrera C. et al.: Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. – Nat. Commun. 11: 128, 2020. https://www.nature.com/articles/s41467-019-13954-0 PubMed PMC
Zadworny M., Comas L.H., Eissenstat D.M.: Linking fine root morphology, hydraulic functioning and shade tolerance of trees. – Ann. Bot.-London 122: 239-250, 2018. PubMed PMC
Zhang S., Jiang H., Peng S. et al.: Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. – J. Exp. Bot. 62: 675-686, 2011. https://academic.oup.com/jxb/article/62/2/675/592307 PubMed PMC
Zhao W., Zhang Q.S., Tan Y. et al.: Photoprotective roles of ascorbate and PSII cyclic electron flow in the response of the seagrass Zostera marina to oxygen-evolving complex photoinactivation. – Photosynthetica 59: 600-605, 2021. https://ps.ueb.cas.cz/artkey/phs-202104-0013_photoprotective-roles-of-ascorbate-and-cstylezostera-marinacstyle.php