Morphophysiological responses of Theobroma cacao L. rootstocks to flooding and post-flooding conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651362
PubMed Central
PMC11558568
DOI
10.32615/ps.2023.031
PII: PS61377
Knihovny.cz E-zdroje
- Klíčová slova
- cocoa, photosynthesis, plasticity, water stress,
- Publikační typ
- časopisecké články MeSH
This study investigates how cocoa rootstocks respond to flooding and post-flooding conditions, offering insights for cocoa plantation sustainability in flood-prone areas due to climate change. We studied Theobroma cacao L. rootstocks for 60 d of flooding and 30 d post-flooding, grafting PS-1319 scions onto five rootstocks (TSH-1188, Cepec-2002, Pará, Esfip-02, SJ-02). Photochemical performance remained stable across rootstocks, while flooding progressively reduced electron transport efficiency. Photochemical damage emerged after 7 d, worsening occurred at 19 d. Although post-flooding efficiency improved, recovery time was insufficient for full restoration. Stem diameter increased less in Esfip-02. TSH-1188 had the highest stem dry mass during flooding and the most root and total dry mass during post-flooding. SJ-02 had the lowest stem dry mass and post-flooding total dry mass. Principal component analysis revealed stem and root development as a key for recovery. SJ-02 and Esfip-02 showed lower flooding tolerance and recovery, while TSH-1188 and Pará exhibited higher resilience.
Comissão Executiva do Plano da Lavoura Cacaueira Linhares Espírito Santo Brazil
Instituto de Ciências da Natureza Universidade Federal de Alfenas Alfenas Minas Gerais Brazil
Zobrazit více v PubMed
Almeida A.-A.F. de, Valle R.R.: Ecophysiology of the cacao tree. – Braz. J. Plant Physiol. 19: 425-448, 2007. 10.1590/S1677-04202007000400011 DOI
Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. 10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. – J. Exp. Bot. 55: 1607-1621, 2004. 10.1093/jxb/erh196 PubMed DOI
Bangar P., Chaudhury A., Tiwari B. et al.: Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. – Turk. J. Biol. 43: 58-69, 2019. 10.3906/biy-1801-64 PubMed DOI PMC
Bertolde F.Z., Almeida A.-A.F. de, Corrêa R.X. et al.: Molecular, physiological and morphological analysis of waterlogging tolerance in clonal genotypes of Theobroma cacao L. – Tree Physiol. 30: 56-67, 2010. 10.1093/treephys/tpp101 PubMed DOI
Bertolde F.Z., Almeida A.-A.F., Pirovani C.P. et al.: Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. – Photosynthetica 50: 447-457, 2012. 10.1007/s11099-012-0052-4 DOI
Bertolde F.Z., Almeida A.-A.F., Pirovani C.P.: Analysis of gene expression and proteomic profiles of clonal genotypes from Theobroma cacao subjected to soil flooding. – PLoS ONE 9: e108705, 2014. 10.1371/journal.pone.0108705 PubMed DOI PMC
Bolhàr-Nordenkampf H.R., Long S.P., Baker N.R. et al.: Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. – Funct. Ecol. 3: 497-514, 1989. 10.2307/2389624 DOI
Colmer T.D., Voesenek L.A.C.J.: Flooding tolerance: suites of plants traits in variable environments. – Funct. Plant Biol. 36: 665-681, 2009. 10.1071/FP09144 PubMed DOI
Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. – Sensors 19: 2736, 2019. 10.3390/s19122736 PubMed DOI PMC
De Almeida J., Tezara W., Herrera A.: Physiological responses to drought and experimental water deficit and waterlogging of four clones of cacao (Theobroma cacao L.) selected for cultivation in Venezuela. – Agr. Water Manage. 171: 80-88, 2016. 10.1016/j.agwat.2016.03.012 DOI
Delgado C., Penn J., Couturier G.: Status of cacao trees following seasonal floods in major watersheds of the Peruvian Amazon. – Agric. Sci. 4: 15-24, 2016. https://pdfs.semanticscholar.org/c843/fd36a04d00d80d84049e9cb2f08c8d7520a7.pdf
Demmig-Adams B., Adams III W.W.: Photoprotection and other responses of plants to high light stress. – Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599-626, 1992. 10.1146/annurev.pp.43.060192.003123 DOI
Dias D.P., Marenco R.A.: Photoinhibition of photosynthesis in Minquartia guianensis and Swietenia macrophylla inferred by monitoring the initial fluorescence. – Photosynthetica 44: 235-240, 2006. 10.1007/s11099-006-0013-x DOI
Domec J.-C., King J.S., Carmichael M.J. et al.: Aquaporins, and not changes in root structure, provide new insights into physiological responses to drought, flooding, and salinity. – J. Exp. Bot. 72: 4489-4501, 2021. 10.1093/jxb/erab100 PubMed DOI
Ferreira D.F.: Sisvar: a computer statistical analysis system. – Ciênc. Agrotec. 35: 1039-1042, 2011. 10.1590/S1413-70542011000600001 DOI
Fritz K.M., Evans M.A., Feminella J.W.: Factors affecting biomass allocation in the riverine macrophyte Justicia americana. – Aquat. Bot. 78: 279-288, 2004. 10.1016/j.aquabot.2003.11.003 DOI
Gonçalves J.F.C., Santos Jr. U.M., Nina Jr. A.R., Chevreuil L.R.: Energetic flux and performance index in copaiba (Copaifera multijuga Hayne) and mahogany (Swietenia macrophylla King) seedlings grown under two irradiance environments. – Braz. J. Plant Physiol. 19: 171-184, 2007. 10.1590/S1677-04202007000300001 DOI
Hazrati S., Tahmasebi-Sarvestani Z., Modarres-Sanavy S.A.M. et al.: Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. – Plant Physiol. Biochem. 106: 141-148, 2016. 10.1016/j.plaphy.2016.04.046 PubMed DOI
Ishida F.Y., Oliveira L.E.M., Carvalho C.J.R., Alves J.D.: [Effects of flooding and submergence on growth, chlorophyll content and leaf fluorescence of Setaria anceps and Paspalum repens plants.] – Ciênc. Agrotec. 26: 1152-1159, 2002. [In Portuguese] https://www.researchgate.net/publication/237722301_Efeitos_da_inundacao_parcial_e_total_sobre_o_crescimento_teor_de_clorofila_e_fluorescencia_de_Setaria_anceps_e_Paspalum_repens1
Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. – Plant Physiol. Biochem. 81: 16-25, 2014. 10.1016/j.plaphy.2014.03.029 PubMed DOI
Kalaji H.M., Račková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? – Environ. Exp. Bot. 152: 149-157, 2018a. 10.1016/j.envexpbot.2017.11.001 DOI
Kalaji M., Rastogi A., Živčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. – Photosynthetica 56: 953-961, 2018b. 10.1007/s11099-018-0766-z DOI
Kang S., Park W.J., Moon Y.E. et al.: Scion root pruning affects leaf C/N ratio and physiological performance of ‘Shiranuhi’ mandarin trees grown in a greenhouse. – Sci. Hortic.-Amsterdam 253: 42-48, 2019. 10.1016/j.scienta.2019.04.013 DOI
Kolb R.M., Medri M.E., Bianchini E. et al.: [Ecological anatomy of Sebastiania commersoniana (Baillon) Smith & Downs (Euphorbiaceae) submitted to flooding.] – Braz. J. Bot. 21: 305-312, 1998. [In Portuguese] 10.1590/S0100-84041998000300010 DOI
Lahive F., Hadley P., Daymond A.J.: The physiological responses of cacao to the environment and the implications for climate change resilience. A review. – Agron. Sustain. Dev. 39: 5, 2019. 10.1007/s13593-018-0552-0 DOI
Li Z., Bai D., Zhong Y. et al.: Physiological responses of two contrasting kiwifruit (Actinidia spp.) rootstocks against waterlogging stress. – Plants-Basel 10: 2586, 2021. 10.3390/plants10122586 PubMed DOI PMC
Lin Z.-H., Chen L.-S., Chen R.-B. et al.: CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. – BMC Plant Biol. 9: 43, 2009. 10.1186/1471-2229-9-43 PubMed DOI PMC
Liu Y., Lei S.G., Cheng L.S. et al.: Leaf photosynthesis of three typical plant species affected by the subsidence cracks of coal mining: a case study in the semiarid region of Western China. – Photosynthetica 57: 75-85, 2019. 10.32615/ps.2019.020 DOI
Martins J.P.R., Schimildt E.R., Alexandre R.S. et al.: Chlorophyll a fluorescence and growth of Neoregelia concentrica (Bromeliaceae) during acclimatization in response to light levels. – In Vitro Cell. Dev.-Pl. 51: 471-481, 2015. 10.1007/s11627-015-9711-z DOI
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
Mielke M.S., Almeida A.-A.F. de, Gomes F.P. et al.: Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. – Environ. Exp. Bot. 50: 221-231, 2003. 10.1016/S0098-8472(03)00036-4 DOI
Mozo I., Rodríguez M.E., Monteoliva S., Luquez V.M.C.: Floodwater depth causes different physiological responses during post-flooding in willows. – Front. Plant Sci. 12: 575090, 2021. 10.3389/fpls.2021.575090 PubMed DOI PMC
Nascimento M.E., Cunha R.L.M., Galvão J.R. et al.: [Morphoanatomic and physiological aspects of Swietenia macrophylla King submitted to two flood conditions.] – Braz. J. Agric. 90: 237-249, 2015. [In Portuguese] 10.37856/bja.v90i3.207 DOI
Nasrullah, Ali S., Umar M. et al.: Flooding tolerance in plants: from physiological and molecular perspectives. – Braz. J. Bot. 45: 1161-1176, 2022. 10.1007/s40415-022-00841-0 DOI
Oliveira J.G. de, Alves P.L.C.A., Magalhães A.C.: The effect of chilling on the photosynthetic activity in coffee (Coffea arabica L.) seedlings: The protective action of chloroplastid pigments. – Braz. J. Plant Physiol. 14: 95-104, 2002. 10.1590/S1677-04202002000200003 DOI
Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. – Physiol. Plantarum 137: 188-199, 2009. 10.1111/j.1399-3054.2009.01273.x PubMed DOI
Parad G.A., Kouchaksaraei M.T., Striker G.G. et al.: Growth, morphology and gas exchange responses of two-year-old Quercus castaneifolia seedlings to flooding stress. – Scand. J. Forest Res. 31: 458-466, 2016. 10.1080/02827581.2015.1072240 DOI
Pires A.P.F., Srivastava D.S., Marino N.A.C. et al.: Interactive effects of climate change and biodiversity loss on ecosystem functioning. – Ecology 99: 1203-1213, 2018. 10.1002/ecy.2202 PubMed DOI
Pivovaroff A.L., Sack L., Santiago L.S.: Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. – New Phytol. 203: 842-850, 2014. 10.1111/nph.12850 PubMed DOI
Prawoto A.A., Zainunnuroni M., Slameto: Response of selected clones of cocoa seedlings in the nursery against high soil water content. – Pelita Perkebunan 21: 90-105, 2005. 10.22302/iccri.jur.pelitaperkebunan.v21i2.17 DOI
Rathod S., Brestic M., Shao H.: Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn. – Afr. J. Microbiol. Res. 5: 4197-4206, 2011. 10.5897/AJMR11.737 DOI
Rehem B.C., Almeida A.-A.F. de, Mielke M.S., Gomes F.P.: [Effects of substrate flooding on growth and chemical composition of Theobroma cacao L. clonal genotypes.] – Rev. Bras. Frutic. 31: 805-815, 2009. [In Portuguese] 10.1590/S0100-29452009000300026 DOI
Ribeiro M.A.Q., Almeida A.-A.F. de, Alves T.F.O. et al.: Rootstock × scion interactions on Theobroma cacao resistance to witches’ broom: photosynthetic, nutritional and antioxidant metabolism responses. – Acta Physiol. Plant. 38: 73, 2016. 10.1007/s11738-016-2095-9 DOI
Ronchi C.P., DaMatta F.M., Batista K.D. et al.: Growth and photosynthetic down-regulation in Coffea arabica in response to restricted root volume. – Funct. Plant Biol. 33: 1013-1023, 2006. 10.1071/FP06147 PubMed DOI
Sena Gomes A.R., Kozlowski T.T.: The effects of flooding on water relations and growth of Theobroma cacao var. catongo seedlings. – J. Hortic. Sci. 61: 265-276, 1986. 10.1080/14620316.1986.11515700 DOI
Shamshiri M.H., Fattahi M.: Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test. – Russ. J. Plant Physiol. 63: 101-110, 2016. 10.1134/S1021443716010155 DOI
Silva Branco M.C. da, Almeida A.-A.F. de, Dalmolin Â.C. et al.: Influence of low light intensity and soil flooding on cacao physiology. – Sci. Hortic.-Amsterdam 217: 243-257, 2017. 10.1016/j.scienta.2017.01.038 DOI
Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. – Environ. Exp. Bot. 51: 45-56, 2004. 10.1016/S0098-8472(03)00059-5 DOI
Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. – In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht: 1995. https://www.researchgate.net/publication/284763350_Measuring_Fast_Fluorescence_Transients_to_Address_Environmental_Questions_The_JIP-Test
Yeung E., Bailey-Serres J., Sasidharan R.: After the deluge: plant revival post-flooding. – Trends Plant Sci. 24: 443-454, 2019. 10.1016/j.tplants.2019.02.007 PubMed DOI
Zhang H., Feng P., Yang W. et al.: Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. – J. Forestry Res. 29: 1049-1059, 2018. 10.1007/s11676-017-0496-2 DOI
Zhang Y., Liu G., Dong H., Li C.: Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. – Crop J. 9: 257-270, 2021. 10.1016/j.cj.2020.08.005 DOI
Zimmermann A.P.L., Fleig F.D., Tabaldi L.A., Aimi S.C.: Morphological and physiological plasticity of saplings of Cabralea canjerana (Vell.) Mart. in different light conditions. – Rev. Árvore 43: e430103, 2019. 10.1590/1806-90882019000100003 DOI
Zotz G., Wilhelm K., Becker A.: Heteroblasty – a review. – Bot. Rev. 77: 109-151, 2011. 10.1007/s12229-010-9062-8 DOI