• This record comes from PubMed

Direct effects of remote ischemic preconditioning on post-exercise-induced changes in kynurenine metabolism

. 2024 ; 15 () : 1462289. [epub] 20241126

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

PURPOSE: Tryptophan (TRP) degradation through the kynurenine pathway is responsible for converting 95% of free TRP into kynurenines, which modulate skeletal muscle bioenergetics, immune and central nervous system activity. Therefore, changes in the kynurenines during exercise have been widely studied but not in the context of the effects of remote ischemic preconditioning (RIPC). In this study, we analyzed the effect of 14-day RIPC training on kynurenines and TRP in runners after running intervals of 20 × 400 m. METHODS: In this study, 27 semi-professional long-distance runners were assigned to two groups: a RIPC group performing 14 days of RIPC training (n = 12), and a placebo group, SHAM (n = 15). Blood was collected for analysis before, immediately after, and at 6 h and 24 h after the run. RESULTS: After the 14-day RIPC/SHAM intervention, post hoc analysis showed a significantly lower concentration of XANA and kynurenic acid to kynurenine ratio (KYNA/KYN) in the RIPC group than in the SHAM group immediately after the running test. Conversely, the decrease in serum TRP levels was higher in the RIPC population. CONCLUSION: RIPC modulates post-exercise changes in XANA and TRP levels, which can affect brain health, yet further research is needed.

See more in PubMed

Agudelo L. Z., Femenia T., Orhan F., Porsmyr-Palmertz M., Goiny M., Martinez-Redondo V., et al. (2014). Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159 (1), 33–45. 10.1016/j.cell.2014.07.051 PubMed DOI

Agudelo L. Z., Ferreira D. M. S., Cervenka I., Bryzgalova G., Dadvar S., Jannig P. R., et al. (2018). Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27 (2), 378–392. 10.1016/j.cmet.2018.01.004 PubMed DOI

Agudelo L. Z., Ferreira D. M. S., Dadvar S., Cervenka I., Ketscher L., Izadi M., et al. (2019). Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nat. Commun. 10 (1), 2767. 10.1038/s41467-019-10712-0 PubMed DOI PMC

Badawy A. A., Guillemin G. (2019). The plasma [Kynurenine]/[Tryptophan] ratio and indoleamine 2,3-dioxygenase: time for appraisal. Int. J. Tryptophan Res. 12, 1178646919868978. 10.1177/1178646919868978 PubMed DOI PMC

Bin E. P., Zaobornyj T., Garces M., D'Annunzio V., Buchholz B., Marchini T., et al. (2023). Remote ischemic preconditioning prevents sarcolemmal-associated proteolysis by MMP-2 inhibition. Mol. Cell Biochem. 479, 2351–2363. 10.1007/s11010-023-04849-2 PubMed DOI

Caru M., Levesque A., Lalonde F., Curnier D. (2019). An overview of ischemic preconditioning in exercise performance: a systematic review. J. Sport Health Sci. 8 (4), 355–369. 10.1016/j.jshs.2019.01.008 PubMed DOI PMC

Cervenka I., Agudelo L. Z., Ruas J. L. (2017). Kynurenines: tryptophan's metabolites in exercise, inflammation, and mental health. Science 357 (6349), eaaf9794. 10.1126/science.aaf9794 PubMed DOI

Chen Y., Guillemin G. J. (2009). Kynurenine pathway metabolites in humans: disease and healthy States. Int. J. Tryptophan Res. 2, 1–19. 10.4137/ijtr.s2097 PubMed DOI PMC

DiNatale B. C., Murray I. A., Schroeder J. C., Flaveny C. A., Lahoti T. S., Laurenzana E. M., et al. (2010). Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol. Sci. 115 (1), 89–97. 10.1093/toxsci/kfq024 PubMed DOI PMC

Friedman M. (1996). Nutritional value of proteins from different food sources. A review. J. Agric. food Chem. 44, 6–29. 10.1021/jf9400167 DOI

Fukui S., Schwarcz R., Rapoport S. I., Takada Y., Smith Q. R. (1991). Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J. Neurochem. 56 (6), 2007–2017. 10.1111/j.1471-4159.1991.tb03460.x PubMed DOI

Guillemin G. J. (2012). Quinolinic acid, the inescapable neurotoxin. FEBS J. 279 (8), 1356–1365. 10.1111/j.1742-4658.2012.08485.x PubMed DOI

Isung J., Granqvist M., Trepci A., Huang J., Schwieler L., Kierkegaard M., et al. (2021). Differential effects on blood and cerebrospinal fluid immune protein markers and kynurenine pathway metabolites from aerobic physical exercise in healthy subjects. Sci. Rep. 11 (1), 1669. 10.1038/s41598-021-81306-4 PubMed DOI PMC

Jung T. W., Park J., Sun J. L., Ahn S. H., Abd El-Aty A. M., Hacimuftuoglu A., et al. (2020). Administration of kynurenic acid reduces hyperlipidemia-induced inflammation and insulin resistance in skeletal muscle and adipocytes. Mol. Cell Endocrinol. 518, 110928. 10.1016/j.mce.2020.110928 PubMed DOI

Kanoria S., Robertson F. P., Mehta N. N., Fusai G., Sharma D., Davidson B. R. (2017). Effect of remote ischaemic preconditioning on liver injury in patients undergoing major hepatectomy for colorectal liver metastasis: a pilot randomised controlled feasibility trial. World J. Surg. 41 (5), 1322–1330. 10.1007/s00268-016-3823-4 PubMed DOI PMC

Metcalfe A. J., Koliamitra C., Javelle F., Bloch W., Zimmer P. (2018). Acute and chronic effects of exercise on the kynurenine pathway in humans - a brief review and future perspectives. Physiol. Behav. 194, 583–587. 10.1016/j.physbeh.2018.07.015 PubMed DOI

Midttun Ø., Hustad S., Ueland P. M. (2009). Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23 (9), 1371–1379. 10.1002/rcm.4013 PubMed DOI

Mieszkowski J., Borkowska A., Stankiewicz B., Kochanowicz A., Niespodzinski B., Surmiak M., et al. (2021a). Single high-dose vitamin D supplementation as an approach for reducing ultramarathon-induced inflammation: a double-blind randomized controlled trial. Nutrients 13 (4), 1280. 10.3390/nu13041280 PubMed DOI PMC

Mieszkowski J., Brzezinska P., Stankiewicz B., Kochanowicz A., Niespodzinski B., Reczkowicz J., et al. (2022). Direct effects of vitamin D supplementation on ultramarathon-induced changes in kynurenine metabolism. Nutrients 14 (21), 4485. 10.3390/nu14214485 PubMed DOI PMC

Mieszkowski J., Stankiewicz B. E., Kochanowicz A., Niespodzinski B., Borkowska A. E., Sikorska K., et al. (2021b). Remote ischemic preconditioning reduces marathon-induced oxidative stress and decreases liver and heart injury markers in the serum. Front. Physiol. 12, 731889. 10.3389/fphys.2021.731889 PubMed DOI PMC

Opitz C. A., Litzenburger U. M., Sahm F., Ott M., Tritschler I., Trump S., et al. (2011). An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478 (7368), 197–203. 10.1038/nature10491 PubMed DOI

Patrick R. P., Ames B. N. (2014). Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 28 (6), 2398–2413. 10.1096/fj.13-246546 PubMed DOI

Phillips R. S., Iradukunda E. C., Hughes T., Bowen J. P. (2019). Modulation of enzyme activity in the kynurenine pathway by kynurenine monooxygenase inhibition. Front. Mol. Biosci. 6, 3. 10.3389/fmolb.2019.00003 PubMed DOI PMC

Pukoli D., Polyak H., Rajda C., Vecsei L. (2021). Kynurenines and neurofilament light chain in multiple sclerosis. Front. Neurosci. 15, 658202. 10.3389/fnins.2021.658202 PubMed DOI PMC

Richard D. M., Dawes M. A., Mathias C. W., Acheson A., Hill-Kapturczak N., Dougherty D. M. (2009). L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res. 2, 45–60. 10.4137/ijtr.s2129 PubMed DOI PMC

Roth W., Zadeh K., Vekariya R., Ge Y., Mohamadzadeh M. (2021). Tryptophan metabolism and gut-brain homeostasis. Int. J. Mol. Sci. 22 (6), 2973. 10.3390/ijms22062973 PubMed DOI PMC

Saran T., Turska M., Kocki T., Zawadka M., Zielinski G., Turski W. A., et al. (2021). Effect of 4-week physical exercises on tryptophan, kynurenine and kynurenic acid content in human sweat. Sci. Rep. 11 (1), 11092. 10.1038/s41598-021-90616-6 PubMed DOI PMC

Savitz J. (2020). The kynurenine pathway: a finger in every pie. Mol. Psychiatry 25 (1), 131–147. 10.1038/s41380-019-0414-4 PubMed DOI PMC

Schlittler M., Goiny M., Agudelo L. Z., Venckunas T., Brazaitis M., Skurvydas A., et al. (2016). Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am. J. Physiol. Cell Physiol. 310 (10), C836–C840. 10.1152/ajpcell.00053.2016 PubMed DOI

Stefanetti R. J., Lamon S., Wallace M., Vendelbo M. H., Russell A. P., Vissing K. (2015). Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch. 467 (7), 1523–1537. 10.1007/s00424-014-1587-y PubMed DOI

Strasser B., Becker K., Fuchs D., Gostner J. M. (2017). Kynurenine pathway metabolism and immune activation: peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology 112 (Pt B), 286–296. 10.1016/j.neuropharm.2016.02.030 PubMed DOI

Taleb O., Maammar M., Klein C., Maitre M., Mensah-Nyagan A. G. (2021). A role for xanthurenic acid in the control of brain dopaminergic activity. Int. J. Mol. Sci. 22 (13), 6974. 10.3390/ijms22136974 PubMed DOI PMC

Tanaka M., Bohar Z., Vecsei L. (2020). Are kynurenines accomplices or principal villains in dementia? Maintenance of kynurenine metabolism. Molecules 25 (3), 564. 10.3390/molecules25030564 PubMed DOI PMC

Tanaka M., Toth F., Polyak H., Szabo A., Mandi Y., Vecsei L. (2021). Immune influencers in action: metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines 9 (7), 734. 10.3390/biomedicines9070734 PubMed DOI PMC

Trifan G., Testai F. D. (2020). Systemic Immune-Inflammation (SII) index predicts poor outcome after spontaneous supratentorial intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis. 29 (9), 105057. 10.1016/j.jstrokecerebrovasdis.2020.105057 PubMed DOI

Vecsei L., Szalardy L., Fulop F., Toldi J. (2013). Kynurenines in the CNS: recent advances and new questions. Nat. Rev. Drug Discov. 12 (1), 64–82. 10.1038/nrd3793 PubMed DOI

Venugopal V., Hausenloy D. J., Ludman A., Di Salvo C., Kolvekar S., Yap J., et al. (2009). Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomised controlled trial. Heart 95 (19), 1567–1571. 10.1136/hrt.2008.155770 PubMed DOI

Yamamoto T., Newsholme E. A. (2000). Diminished central fatigue by inhibition of the L-system transporter for the uptake of tryptophan. Brain Res. Bull. 52 (1), 35–38. 10.1016/s0361-9230(99)00276-2 PubMed DOI

Yamamoto T., Newsholme E. A. (2003). The effect of tryptophan deficiency in the brain on rat fatigue levels: a rat model of fatigue reduction. Adv. Exp. Med. Biol. 527, 527–530. 10.1007/978-1-4615-0135-0_60 PubMed DOI

Yilmaz C., Gokmen V. (2020). Neuroactive compounds in foods: occurrence, mechanism and potential health effects. Food Res. Int. 128, 108744. 10.1016/j.foodres.2019.108744 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...