Compounds Containing 2,3-Bis(phenylamino) Quinoxaline Exhibit Activity Against Methicillin-Resistant Staphylococcus aureus, Enterococcus faecalis, and Their Biofilms
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
This work was supported by Aberystwyth University (Technology Transfer Grant Development Award) and the Life Sciences Wales Research Network (a Welsh Government Ser Cymru initiative).
PubMed
39665231
PubMed Central
PMC11635387
DOI
10.1002/mbo3.70011
Knihovny.cz E-zdroje
- Klíčová slova
- Enterococcus faecalis, Enterococcus faecium, MRSA, Staphylococcus aureus, VRE, biofilm, quinoxaline,
- MeSH
- antibakteriální látky * farmakologie MeSH
- biofilmy * účinky léků růst a vývoj MeSH
- chinoxaliny * farmakologie MeSH
- Enterococcus faecalis * účinky léků MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus * účinky léků MeSH
- mikrobiální testy citlivosti * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- chinoxaliny * MeSH
Antimicrobial resistance remains a global issue, hindering the control of bacterial infections. This study examined the antimicrobial properties of 2,3-N,N-diphenyl quinoxaline derivatives against Gram-positive, Gram-negative, and Mycobacterium species. Two quinoxaline derivatives (compounds 25 and 31) exhibited significant activity against most strains of Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis tested, with MIC values ranging from 0.25 to 1 mg/L. These compounds also showed effective antibacterial activity against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecium/E. faecalis (VRE) strains. They demonstrated comparable or superior activity to four current antibiotics (vancomycin, teicoplanin, daptomycin, and linezolid) against a wide range of clinically relevant isolates. Additionally, they were more effective in preventing S. aureus and E. faecalis biofilm formation compared to several other antibiotics. In summary, these two quinoxaline derivatives have potential as new antibacterial agents.
Department of Life Sciences Aberystwyth University Aberystwyth UK
Department of Organic Chemistry UCT Prague Prague Czech Republic
School of Pharmacy and Pharmaceutical Sciences Cardiff University Cardiff UK
Zobrazit více v PubMed
Abedon, S. 2011. “Chapter 1 ‐ Phage Therapy Pharmacology: Calculating Phage Dosing.” In Advances in Applied Microbiology. 77, edited by Laskin A. I., Sariaslani S. and Gadd G. M., 1–40). Academic Press. PubMed
Ajani, O. O. 2014. “Present Status of Quinoxaline Motifs: Excellent Pathfinders in Therapeutic Medicine.” European Journal of Medicinal Chemistry 85: 688–715. 10.1016/j.ejmech.2014.08.034. PubMed DOI
Baptista, R. , Fazakerley D. M., Beckmann M., Baillie L., and Mur L. A. J.. 2018. “Untargeted Metabolomics Reveals a New Mode of Action of Pretomanid (Pa‐824).” Scientific Reports 8: 5084. PubMed PMC
Bhowmick, S. , Beckmann M., Shen J., and Mur L. A. J.. 2023. “Identification and Metabolomic Characterization of Potent Anti‐MRSA Phloroglucinol Derivatives From Dryopteris Crassirhizoma Nakai (Polypodiaceae).” Frontiers in Pharmacology 13: 961087. 10.3389/fphar.2022.961087. PubMed DOI PMC
Bolocan, A. S. , Upadrasta A., and de Almeida Bettio P. H., et al. 2019. “Evaluation of Phage Therapy in the Context of Enterococcus Faecalis and Its Associated Diseases.” Viruses 11, no. 4: 366. 10.3390/v11040366. PubMed DOI PMC
Brauner, A. , Fridman O., Gefen O., and Balaban N. Q.. 2016. “Distinguishing Between Resistance, Tolerance and Persistence to Antibiotic Treatment.” Nature Reviews Microbiology 14, no. 5: 320–330. 10.1038/nrmicro.2016.34. PubMed DOI
British Standards Institution . 2020. Available from: https://www.iso.org/obp/ui/en/#iso:std:iso:20776:-1:ed-2:v2:en.
Chait, R. , Vetsigian K., and Kishony R.. 2012. “What Counters Antibiotic Resistance in Nature?” Nature Chemical Biology 8, no. 1: 2–5. 10.1038/nchembio.745. PubMed DOI
Choi, V. , Rohn J. L., Stoodley P., Carugo D., and Stride E.. 2023. “Drug Delivery Strategies for Antibiofilm Therapy.” Nature Reviews Microbiology 21, no. 9: 555–572. 10.1038/s41579-023-00905-2. PubMed DOI
Corona, P. , Ibba R., Piras S., Molicotti P., Bua A., and Carta A.. 2022. “Quinoxaline‐Based Efflux Pump Inhibitors Restore Drug Susceptibility in Drug‐Resistant Nontuberculous Mycobacteria.” Archiv der Pharmazie 355, no. 8: 2100492. 10.1002/ardp.202100492. PubMed DOI
Courtenay, M. , Castro‐Sanchez E., Fitzpatrick M., Gallagher R., Lim R., and Morris G.. 2019. “Tackling Antimicrobial Resistance 2019‐2024–the Uk's Five‐Year National Action Plan.” Journal of Hospital Infection 101, no. 4: 426–427. PubMed
Cushnie, T. P. T. , Cushnie B., Echeverría J., et al. 2020. “Bioprospecting for Antibacterial Drugs: A Multidisciplinary Perspective on Natural Product Source Material, Bioassay Selection and Avoidable Pitfalls.” Pharmaceutical Research 37, no. 7: 125. 10.1007/s11095-020-02849-1. PubMed DOI
Donlan, R. M. 2001. “Biofilm Formation: A Clinically Relevant Microbiological Process.” Clinical Infectious Diseases 33, no. 8: 1387–1392. PubMed
Ebbensgaard, A. , Mordhorst H., Aarestrup F. M., and Hansen E. B.. 2018. “The Role of Outer Membrane Proteins and Lipopolysaccharides for the Sensitivity of Escherichia coli to Antimicrobial Peptides.” Frontiers in Microbiology 9: 2153. 10.3389/fmicb.2018.02153. PubMed DOI PMC
Ekkelenkamp, M. B. , Díez‐Aguilar M., Tunney M. M., Elborn J. S., Fluit A. C., and Cantón R.. 2022. “editors. Establishing Antimicrobial Susceptibility Testing Methods and Clinical Breakpoints for Inhaled Antibiotic Therapy.” In Open Forum Infectious Diseases. Oxford University Press US. PubMed PMC
El‐Atawy, M. A. , Hamed E. A., Alhadi M., and Omar A. Z.. 2019. “Synthesis and Antimicrobial Activity of Some New Substituted Quinoxalines.” Molecules 24, no. 22: 4198. 10.3390/molecules24224198. PubMed DOI PMC
El‐Hossary, E. M. , Förstner K. U., François P., et al. 2018. “A Novel Mechanism of Inactivating Antibacterial Nitro Compounds in the Human Pathogen Staphylococcus Aureus by Overexpression of a Nadh‐Dependent Flavin Nitroreductase.” Antimicrobial Agents and Chemotherapy 62, no. 2: e01510‐17. 10.1128/aac.01510-17. PubMed DOI PMC
French, G. L. 2006. “Bactericidal Agents in the Treatment of MRSA Infections—The Potential Role of Daptomycin.” Journal of Antimicrobial Chemotherapy 58, no. 6: 1107–1117. 10.1093/jac/dkl393. PubMed DOI
Giucă, M. C. , Petrini A., Ceornea T., and Ungureanu V.. 2010. “[Study of Antibiotic Resistance of Enterococci Strains Received in 2009 in the National Reference Centre for Enterococci].” Bacteriologia, virusologia, parazitologia, epidemiologia (Bucharest, Romania: 1990) 55, no. 2: 77–82. PubMed
Hegemann, J. D. , Birkelbach J., Walesch S., and Müller R.. 2023. “Current Developments in Antibiotic Discovery.” EMBO Reports 24, no. 1: e56184. 10.15252/embr.202256184. PubMed DOI PMC
Hernando‐Amado, S. , Blanco P., and Alcalde‐Rico M., et al. 2016. “Multidrug Efflux Pumps As Main Players in Intrinsic and Acquired Resistance to Antimicrobials.” Drug Resistance Updates 28: 13–27. 10.1016/j.drup.2016.06.007. PubMed DOI
Ingram‐Sieber, K. , Cowan N., Panic G., et al. 2014. “Orally Active Antischistosomal Early Leads Identified From the Open Access Malaria Box.” PLoS Neglected Tropical Diseases 8, no. 1: e2610. 10.1371/journal.pntd.0002610. PubMed DOI PMC
International A . 2012. ASTM E2799‐12 Standard Test Method for Testing Disinfectant Efficacy Against Pseudomonas Aeruginosa Biofilm Using the MBEC Assay. Conshohocken, PA: ASTM International West.
Keri, R. S. , Pandule S. S., Budagumpi S., and Nagaraja B. M.. 2018. “Quinoxaline and Quinoxaline‐1,4‐di‐N‐oxides: An Emerging Class of Antimycobacterials.” Archiv der Pharmazie 351, no. 5: 1700325. 10.1002/ardp.201700325. PubMed DOI
Kester, J. C. , and Fortune S. M.. 2014. “Persisters and Beyond: Mechanisms of Phenotypic Drug Resistance and Drug Tolerance in Bacteria.” Critical Reviews in Biochemistry and Molecular Biology 49, no. 2: 91–101. 10.3109/10409238.2013.869543. PubMed DOI
Kramer, T. S. , Remschmidt C., Werner S., et al. 2018. “The Importance of Adjusting for Enterococcus Species When Assessing the Burden of Vancomycin Resistance: A Cohort Study Including over 1000 Cases of Enterococcal Bloodstream Infections.” Antimicrobial resistance & Infection control 7: 1–9. PubMed PMC
Kümpornsin, K. , Kochakarn T., and Yeo T., et al. 2023. “Generation of a Mutator Parasite to Drive Resistome Discovery in Plasmodium Falciparum.” Nature Communications 14, no. 1: 3059. 10.1038/s41467-023-38774-1. PubMed DOI PMC
Kłodzińska, S. N. , Priemel P. A., Rades T., and Nielsen H. M.. 2018. “Combining Diagnostic Methods for Antimicrobial Susceptibility Testing – A Comparative Approach.” Journal of Microbiological Methods 144: 177–185. 10.1016/j.mimet.2017.11.010. PubMed DOI
Lewis, J. S. , and Jorgensen J. H.. 2005. “Inducible Clindamycin Resistance in Staphylococci: Should Clinicians and Microbiologists be Concerned.” Clinical Infectious Diseases 40, no. 2: 280–285. 10.1086/426894. PubMed DOI
Limban, C. , and Chifiriuc M. C.. 2011. “Antibacterial Activity of New Dibenzoxepinone Oximes With Fluorine and Trifluoromethyl Group Substituents.” International Journal of Molecular Sciences 12, no. 10: 6432–6444. 10.3390/ijms12106432. PubMed DOI PMC
Maillard, J.‐Y. , and Pascoe M.. 2024. “Disinfectants and Antiseptics: Mechanisms of Action and Resistance.” Nature Reviews Microbiology 22, no. 1: 4–17. 10.1038/s41579-023-00958-3. PubMed DOI
Mamelli, L. , Petit S., Chevalier J., et al. 2009. “New Antibiotic Molecules: Bypassing the Membrane Barrier of Gram Negative Bacteria Increases the Activity of Peptide Deformylase Inhibitors.” PLoS One 4, no. 7: e6443. 10.1371/journal.pone.0006443. PubMed DOI PMC
Matos, M. J. , Vazquez‐Rodriguez S., Santana L., et al. 2013. “Synthesis and Structure‐Activity Relationships of Novel Amino/Nitro Substituted 3‐Arylcoumarins as Antibacterial Agents.” Molecules (Basel, Switzerland) 18: 1394–1404. PubMed PMC
McClure, J. A. , Conly J. M., and Lau V., et al. 2006. “Novel Multiplex PCR Assay for Detection of the Staphylococcal Virulence Marker Panton‐Valentine Leukocidin Genes and Simultaneous Discrimination of Methicillin‐Susceptible From ‐Resistant Staphylococci.” Journal of Clinical Microbiology 44, no. 3: 1141–1144. 10.1128/jcm.44.3.1141-1144.2006. PubMed DOI PMC
Montana, M. , Montero V., Khoumeri O., and Vanelle P.. 2021. “Quinoxaline Moiety: A Potential Scaffold Against Mycobacterium Tuberculosis.” Molecules 26, no. 16: 4742. 10.3390/molecules26164742. PubMed DOI PMC
Murray, C. J. L. , Ikuta K. S., Sharara F., et al. 2022. “Global Burden of Bacterial Antimicrobial Resistance in 2019: a Systematic Analysis.” The lancet 399, no. 10325: 629–655. PubMed PMC
Nichol, K. , Sill M., Laing N., Johnson J., Hoban D., and Zhanel G.. 2006. “Molecular Epidemiology of Urinary Tract Isolates of Vancomycin‐Resistant Enterococcus Faecium From North America.” International Journal of Antimicrobial Agents 27, no. 5: 392–396. 10.1016/j.ijantimicag.2005.12.006. PubMed DOI
Okae, Y. , Nishitani K., and Sakamoto A., et al. 2022. “Estimation of Minimum Biofilm Eradication Concentration (MBEC) on In Vivo Biofilm on Orthopedic Implants in a Rodent Femoral Infection Model.” Frontiers in Cellular and Infection Microbiology 12: 896978. 10.3389/fcimb.2022.896978. PubMed DOI PMC
O'Neill, J. 2016. Tackling Drug‐resistant Infections Globally: Final Report and Recommendations . https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.
Organization WH . 2014. Antimicrobial Resistance: Global Report on Surveillance. World Health Organization.
Padalino, G. , El‐Sakkary N., Liu L. J., et al. 2021. “Anti‐Schistosomal Activities of Quinoxaline‐Containing Compounds: From Hit Identification to Lead Optimisation.” European Journal of Medicinal Chemistry 226: 113823. 10.1016/j.ejmech.2021.113823. PubMed DOI PMC
Pankey, G. A. , and Sabath L. D.. 2004. “Clinical Relevance of Bacteriostatic Versus Bactericidal Mechanisms of Action in the Treatment of Gram‐Positive Bacterial Infections.” Clinical Infectious Diseases 38, no. 6: 864–870. 10.1086/381972. PubMed DOI
Pereira, J. A. , Pessoa A. M., and Cordeiro M. N. D. S., et al. 2015. “Quinoxaline, Its Derivatives and Applications: A State of the Art Review.” European Journal of Medicinal Chemistry 97: 664–672. 10.1016/j.ejmech.2014.06.058. PubMed DOI
Rodrigues, J. H. S. , Ueda‐Nakamura T., Corrêa A. G., Sangi D. P., and Nakamura C. V.. 2014. “A Quinoxaline Derivative as a Potent Chemotherapeutic Agent, Alone or in Combination with Benznidazole, Against Trypanosoma Cruzi.” PLoS One 9, no. 1: e85706. 10.1371/journal.pone.0085706. PubMed DOI PMC
Salam, M. A. , Al‐Amin M. Y., and Salam M. T., et al. 2023. “Antimicrobial Resistance: A Growing Serious Threat for Global Public Health.” Healthcare 11, no. 13: 1946. 10.3390/healthcare11131946. PubMed DOI PMC
Silva de Jesus Passaes, A. C. , Arantes Dantas J., Landim Lopes F., et al. 2023. “Quinoxalines Against Leishmania Amazonensis: Sar Study, Proposition of a New Derivative, Qsar Prediction, Synthesis, and Biological Evaluation.” Scientific Reports 13, no. 1: 18136. 10.1038/s41598-023-45436-1. PubMed DOI PMC
Standardization IOf . ISO 20776‐1: 2019. Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 1: Broth Micro‐dilution Reference Method for Testing the in Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. ISO; 2019.
Wiegand, I. , Hilpert K., and Hancock R. E.. 2008b. “Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances.” Nature Protocols 3, no. 2: 163–175. 10.1038/nprot.2007.521. PubMed DOI
Wiegand, I. , Hilpert K., and Hancock R. E. W.. 2008a. “Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances.” Nature Protocols 3: 163. 10.1038/nprot.2007.521. PubMed DOI
Yadav, S. , and Kapley A.. 2021. “Antibiotic Resistance: Global Health Crisis and Metagenomics.” Biotechnology Reports 29: e00604. 10.1016/j.btre.2021.e00604. PubMed DOI PMC
Zhao, A. , Sun J., and Liu Y.. 2023a. “Understanding Bacterial Biofilms: From Definition to Treatment Strategies.” Frontiers in Cellular and Infection Microbiology 13: 1137947. PubMed PMC
Zhao, A. , Sun J., and Liu Y.. 2023b. “Understanding Bacterial Biofilms: From Definition to Treatment Strategies.” Frontiers in Cellular and Infection Microbiology 13: 1137947. 10.3389/fcimb.2023.1137947. PubMed DOI PMC