High performance supercapacitors driven by the synergy of a redox-active electrolyte and core-nanoshell zeolitic imidazolate frameworks
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39991062
PubMed Central
PMC11844434
DOI
10.1039/d4na00805g
PII: d4na00805g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The selection of appropriate electrolytes plays a crucial role in improving the electrochemical performance of the supercapacitor electrode. The electrolyte helps to select an appropriate potential window of the device, which is directly related to its energy density. Also, the selection of an appropriate electrode material targets the specific capacitance. Therefore, in this work, we targeted an electrode material based on a ZIF-8@ZIF-67 (Z867) core-nanoshell structure and tested its performance in redox active electrolyte (RAE), i.e., 0.2 M K3[Fe(CN)6] in 1 M Na2SO4. The synergy between the core-nanoshell electrode having ZIF-8 as a core and ZIF-67 as a nanoshell along with RAE further complements the redox active sites, resulting in the improved charge transport. Therefore, when the Z867 core-nanoshell electrode is tested in a three-electrode system, it outperforms pristine ZIF-8 and ZIF-67 electrode materials. The working electrode modified with the Z867 core-nanoshell showed a maximum specific capacitance of 496.4 F g-1 at 4.5 A g-1 current density with the RAE, which is much higher than that of the aqueous electrolyte. A Z867-modified working electrode was assembled as the positive and negative electrode in a symmetrical cell configuration to create a redox supercapacitor device for practical application. The constructed device displayed maximal energy and power densities of 49.6 W h kg-1 and 3.2 kW kg-1 respectively, along with a capacitance retention of 92% after 10 000 charge-discharge cycles. Hence, these studies confirm that using RAE can improve the electrochemical performance of electrodes to a greater extent than that of aqueous electrolyte-based supercapacitors.
Academy of Scientific and Innovative Research Ghaziabad 201002 India
CSIR Central Scientific Instruments Organisation Chandigarh 160030 India
Institute of Nano Science and Technology Sector 81 Mohali 140306 Punjab India
Zobrazit více v PubMed
Chen J.-C. Hsu C.-T. Hu C.-C. Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. J. Power Sources. 2014;253:205–213. doi: 10.1016/j.jpowsour.2013.12.073. DOI
Bai J. Wang S. Li Y. Wang Z. Tang J. Effect of chemical structure and molecular weight on the properties of lignin-based ultrafine carbon fibers. Int. J. Biol. Macromol. 2021;187:594–602. doi: 10.1016/j.ijbiomac.2021.07.149. PubMed DOI
Li Y. et al., MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small. 2018;14:1704435. doi: 10.1002/smll.201704435. PubMed DOI
Nargatti K. Ahankari S. Additive Manufacturing of Supercapacitor Electrodes – Materials, Methods and Design. Key Eng. Mater. 2022;913:59–75.
Zhang S. et al., Highly stable supercapacitors with MOF-derived Co 9 S 8/carbon electrodes for high rate electrochemical energy storage. J. Mater. Chem. A. 2017;5:12453–12461. doi: 10.1039/C7TA03070C. DOI
Ma L. Feng X. Wang S. Wang B. Recent advances in AIEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Mater. Chem. Front. 2017;1:2474–2486. doi: 10.1039/C7QM00254H. DOI
Jin Z. Yang H. Exploration of Zr–Metal–Organic Framework as Efficient Photocatalyst for Hydrogen Production. Nanoscale Res. Lett. 2017;12:539. doi: 10.1186/s11671-017-2311-6. PubMed DOI PMC
Kim J. et al., Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. J. Mater. Chem. A. 2017;5:15065–15072. doi: 10.1039/C7TA03356G. DOI
Park K. S. et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006;103:10186–10191. PubMed PMC
Jayakumar A. Antony R. P. Wang R. Lee J. MOF-Derived Hollow Cage Ni x Co 3− x O 4 and Their Synergy with Graphene for Outstanding Supercapacitors. Small. 2017;13:1603102. doi: 10.1002/smll.201603102. PubMed DOI
An Y. et al., Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 2020;400:125843. doi: 10.1016/j.cej.2020.125843. DOI
Zhong M. et al., Zeolitic imidazole framework derived composites of nitrogen-doped porous carbon and reduced graphene oxide as high-efficiency cathode catalysts for Li–O 2 batteries. Inorg. Chem. Front. 2017;4:1533–1538. doi: 10.1039/C7QI00314E. DOI
Zhang D. et al., Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv. 2015;5:58772–58776.
Wang P. Li Y. Li S. Liao X. Sun S. Water-promoted zeolitic imidazolate framework-67 transformation to Ni–Co layered double hydroxide hollow microsphere for supercapacitor electrode material. J. Mater. Sci.:Mater. Electron. 2017;28:9221–9227.
Wang S. et al., Time and temperature dependent multiple hierarchical NiCo2 O4 for high-performance supercapacitors. Dalton Trans. 2016;45:7469–7475. PubMed
Ahmad R. Khan U. A. Iqbal N. Noor T. Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview. RSC Adv. 2020;10:43733–43750. doi: 10.1039/D0RA08560J. PubMed DOI PMC
Wang X. et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI
Furukawa H. Cordova K. E. O'Keeffe M. Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. PubMed DOI
Shao W. et al., Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. J. Mater. Chem. A. 2020;8:3168–3179. doi: 10.1039/C9TA12099H. DOI
Zhou Y. et al., MOF-derived Co3O4-C/Ni2P2O7 electrode material for high performance supercapacitors. Chem. Eng. J. 2019;378:122242. doi: 10.1016/j.cej.2019.122242. DOI
Wang X. Geng Q. Shi G. Zhang Y. Li D. MOF-derived yolk–shell Ni/C architectures assembled with Ni@C core–shell nanoparticles for lightweight microwave absorbents. CrystEngComm. 2020;22:6796–6804. doi: 10.1039/D0CE01242D. DOI
Arunpandiyan S. Vinoth S. Pandikumar A. Raja A. Arivarasan A. Decoration of CeO2 nanoparticles on hierarchically porous MnO2 nanorods and enhancement of supercapacitor performance by redox additive electrolyte. J. Alloys Compd. 2021;861:158456. doi: 10.1016/j.jallcom.2020.158456. DOI
Akhtar M. A. Chowdhury A. Chandra A. Addition of redox additives—synergic strategy for enhancing the electrochemical activity of spinel Co 3 O 4 based supercapacitors. J. Phys. D:Appl. Phys. 2019;52:155501. doi: 10.1088/1361-6463/ab00d3. DOI
Arunpandiyan S. et al., Significance of Redox Additive Electrolyte over Energy and Power Densities of Mixed Metal Vanadate-Based Supercapattery Device. ACS Appl. Electron. Mater. 2022;4:5884–5892. doi: 10.1021/acsaelm.2c01049. DOI
Frackowiak E. Meller M. Menzel J. Gastol D. Fic K. Redox-active electrolyte for supercapacitor application. Faraday Discuss. 2014;172:179–198. doi: 10.1039/C4FD00052H. PubMed DOI
Li Y. Wang G. Wei T. Fan Z. Yan P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy. 2016;19:165–175. doi: 10.1016/j.nanoen.2015.10.038. DOI
Wang G. Zhang L. Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012;41:797–828. doi: 10.1039/C1CS15060J. PubMed DOI
Forouzandeh P. Kumaravel V. Pillai S. C. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts. 2020;10:969. doi: 10.3390/catal10090969. DOI
Akinwolemiwa B. Peng C. Chen G. Z. Redox Electrolytes in Supercapacitors. J. Electrochem. Soc. 2015;162:A5054–A5059.
Ren L. et al., High capacitive property for supercapacitor using Fe 3+/Fe 2+ redox couple additive electrolyte. Electrochim. Acta. 2017;231:705–712. doi: 10.1016/j.electacta.2017.02.056. DOI
Pan Y. et al., Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. J. Am. Chem. Soc. 2018;140:2610–2618. doi: 10.1021/jacs.7b12420. PubMed DOI
Shrivastav V. et al., ZIF-67 derived Co3S4 hollow microspheres and WS2 nanorods as a hybrid electrode material for flexible 2V solid-state supercapacitor. Electrochim. Acta. 2020;345:136194.
Kaur A. et al., Waste Paper-Derived Porous Carbon Incorporated with Mesoporous ZIF-8 Crystals for Symmetrical Supercapacitors. Energy Fuels. 2023;37:11376–11387.
Liu C. et al., Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nat. Commun. 2020;11:4971. doi: 10.1038/s41467-020-18776-z. PubMed DOI PMC
Ha J. Jeon M. Park J. Kim J. Moon H. R. Effect of steric hindrance on the interfacial connection of MOF-on-MOF architectures. Nanoscale Adv. 2023;5:2111–2117. doi: 10.1039/D2NA00790H. PubMed DOI PMC
Wang H. et al., Effect of photo-doping on performance for solid-state dye-sensitized solar cell based on 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene and carbon counter electrode. Electrochim. Acta. 2013;99:238–241.
Schoeffert S. Thermal batteries modeling, self-discharge and self-heating. J. Power Sources. 2005;142:361–369.
Sundriyal S. Shrivastav V. Kaur H. Mishra S. Deep A. High-Performance Symmetrical Supercapacitor with a Combination of a ZIF-67/rGO Composite Electrode and a Redox Additive Electrolyte. ACS Omega. 2018;3:17348–17358. doi: 10.1021/acsomega.8b02065. PubMed DOI PMC
Akram A. et al., Ultrahigh performance asymmetric supercapacitor devices with synergetic interaction between metal organic frameworks/graphene nano platelets and redox additive electrolyte. J. Alloys Compd. 2022;891:161961. doi: 10.1016/j.jallcom.2021.161961. DOI
Sundriyal S. Shrivastav V. Sharma M. Mishra S. Deep A. Redox Additive Electrolyte Study of Mn–MOF Electrode for Supercapacitor Applications. ChemistrySelect. 2019;4:2585–2592. doi: 10.1002/slct.201900305. DOI
Genieser R. et al., Corrigendum to ‘Lithium ion batteries (NMC/graphite) cycling at 80 °C: Different electrolytes and related degradation mechanism’ [J. Power Sources 373 (2017) 172–183] J. Power Sources. 2018;382:198. doi: 10.1016/j.jpowsour.2018.02.044. DOI
Chen H. et al., Mesoporous ZnCo 2 O 4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSi x nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy. 2014;10:245–258. doi: 10.1016/j.nanoen.2014.09.020. DOI
Conway B. E., Electrochemical Supercapacitors, Springer US, Boston, MA, 1999, 10.1007/978-1-4757-3058-6 DOI
Simon P. Gogotsi Y. Dunn B. Where Do Batteries End and Supercapacitors Begin? Science. 2014;343:1210–1211. doi: 10.1126/science.1249625. PubMed DOI
Sharma M. Sundriyal S. Panwar A. K. Gaur A. Facile synthesis and electrochemical performance of Mg-substituted Ni1-xMgxCo2O4 mesoporous nanoflakes for energy storage applications. Electrochim. Acta. 2019;294:53–59. doi: 10.1016/j.electacta.2018.10.085. DOI
Augustyn V. Simon P. Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014;7:1597. doi: 10.1039/C3EE44164D. DOI
Chen J. et al., Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation. Carbon. 2011;49:3141–3147. doi: 10.1016/j.carbon.2011.03.045. DOI
Moseley P. T. High rate partial-state-of-charge operation of VRLA batteries. J. Power Sources. 2004;127:27–32. doi: 10.1016/j.jpowsour.2003.09.005. DOI
Zhao Y. Shah N. Brandon N. The Development and Application of a Novel Optimisation Strategy for Solid Oxide Fuel Cell-Gas Turbine Hybrid Cycles. Fuel Cells. 2010;10:181–193. doi: 10.1002/fuce.200900127. DOI
Gonçalves R. Lanceros-Méndez S. Costa C. M. Electrode fabrication process and its influence in lithium-ion battery performance: State of the art and future trends. Electrochem. Commun. 2022;135:107210. doi: 10.1016/j.elecom.2022.107210. DOI
Örüm Aydin A. et al., Lithium-Ion Battery Manufacturing: Industrial View on Processing Challenges, Possible Solutions and Recent Advances. Batteries. 2023;9:555. doi: 10.3390/batteries9110555. DOI
Xiong G. et al., Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 2018;9:790. doi: 10.1038/s41467-018-03112-3. PubMed DOI PMC
Pachfule P. Shinde D. Majumder M. Xu Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 2016;8:718–724. doi: 10.1038/nchem.2515. PubMed DOI
Hou X. et al., Metal Organic Framework Derived Core–Shell Structured Co 9 S 8 @N–C@MoS 2 Nanocubes for Supercapacitor. ACS Appl. Energy Mater. 2018;1:3513–3520. doi: 10.1021/acsaem.8b00773. DOI
Yi H. Wang H. Jing Y. Peng T. Wang X. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J. Power Sources. 2015;285:281–290. doi: 10.1016/j.jpowsour.2015.03.106. DOI
Yang Q. Liu Y. Yan M. Lei Y. Shi W. MOF-derived hierarchical nanosheet arrays constructed by interconnected NiCo-alloy@NiCo-sulfide core-shell nanoparticles for high-performance asymmetric supercapacitors. Chem. Eng. J. 2019;370:666–676. doi: 10.1016/j.cej.2019.03.239. DOI
Kumar S. Weng P.-H. Fu Y.-P. Core-shell-structured CuO@Ni-MOF: bifunctional electrode toward battery-type supercapacitors and oxygen evolution reaction. Mater. Today Chem. 2022;26:101159. doi: 10.1016/j.mtchem.2022.101159. DOI
Sundriyal S. Mishra S. Deep A. Study of Manganese-1,4-Benzenedicarboxylate Metal Organic Framework Electrodes Based Solid State Symmetrical Supercapacitor. Energy Procedia. 2019;158:5817–5824. doi: 10.1016/j.egypro.2019.01.546. DOI
Dillon A. C. Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chem. Rev. 2010;110:6856–6872. doi: 10.1021/cr9003314. PubMed DOI
Li W.-H. et al., Conductive Metal-Organic Framework Nanowire Array Electrodes for High-Performance Solid-State Supercapacitors. Adv. Funct. Mater. 2017;27:1702067. doi: 10.1002/adfm.201702067. DOI
Zhang Y. et al., Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv. 2015;5:58100–58106. doi: 10.1039/C5RA11597C. DOI
Zhang C. et al., Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A. 2016;4:16516–16523. doi: 10.1039/C6TA06314D. DOI
Liu Y. Li G. Guo Y. Ying Y. Peng X. Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT. ACS Appl. Mater. Interfaces. 2017;9:14043–14050. doi: 10.1021/acsami.7b03368. PubMed DOI
Hu C. et al., Core–shell crystalline ZIF-67@amorphous ZIF for high-performance supercapacitors. J. Mater. Sci. 2020;55:16360–16373. doi: 10.1007/s10853-020-05163-8. DOI
Xu J. Liu S. Liu Y. Co3O4/ZnO nanoheterostructure derived from core–shell ZIF-8@ZIF-67 for supercapacitors. RSC Adv. 2016;6:52137–52142. doi: 10.1039/C6RA07773K. DOI