High performance supercapacitors driven by the synergy of a redox-active electrolyte and core-nanoshell zeolitic imidazolate frameworks

. 2025 Mar 25 ; 7 (7) : 2105-2118. [epub] 20250210

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39991062

The selection of appropriate electrolytes plays a crucial role in improving the electrochemical performance of the supercapacitor electrode. The electrolyte helps to select an appropriate potential window of the device, which is directly related to its energy density. Also, the selection of an appropriate electrode material targets the specific capacitance. Therefore, in this work, we targeted an electrode material based on a ZIF-8@ZIF-67 (Z867) core-nanoshell structure and tested its performance in redox active electrolyte (RAE), i.e., 0.2 M K3[Fe(CN)6] in 1 M Na2SO4. The synergy between the core-nanoshell electrode having ZIF-8 as a core and ZIF-67 as a nanoshell along with RAE further complements the redox active sites, resulting in the improved charge transport. Therefore, when the Z867 core-nanoshell electrode is tested in a three-electrode system, it outperforms pristine ZIF-8 and ZIF-67 electrode materials. The working electrode modified with the Z867 core-nanoshell showed a maximum specific capacitance of 496.4 F g-1 at 4.5 A g-1 current density with the RAE, which is much higher than that of the aqueous electrolyte. A Z867-modified working electrode was assembled as the positive and negative electrode in a symmetrical cell configuration to create a redox supercapacitor device for practical application. The constructed device displayed maximal energy and power densities of 49.6 W h kg-1 and 3.2 kW kg-1 respectively, along with a capacitance retention of 92% after 10 000 charge-discharge cycles. Hence, these studies confirm that using RAE can improve the electrochemical performance of electrodes to a greater extent than that of aqueous electrolyte-based supercapacitors.

Zobrazit více v PubMed

Chen J.-C. Hsu C.-T. Hu C.-C. Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. J. Power Sources. 2014;253:205–213. doi: 10.1016/j.jpowsour.2013.12.073. DOI

Bai J. Wang S. Li Y. Wang Z. Tang J. Effect of chemical structure and molecular weight on the properties of lignin-based ultrafine carbon fibers. Int. J. Biol. Macromol. 2021;187:594–602. doi: 10.1016/j.ijbiomac.2021.07.149. PubMed DOI

Li Y. et al., MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Small. 2018;14:1704435. doi: 10.1002/smll.201704435. PubMed DOI

Nargatti K. Ahankari S. Additive Manufacturing of Supercapacitor Electrodes – Materials, Methods and Design. Key Eng. Mater. 2022;913:59–75.

Zhang S. et al., Highly stable supercapacitors with MOF-derived Co 9 S 8/carbon electrodes for high rate electrochemical energy storage. J. Mater. Chem. A. 2017;5:12453–12461. doi: 10.1039/C7TA03070C. DOI

Ma L. Feng X. Wang S. Wang B. Recent advances in AIEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Mater. Chem. Front. 2017;1:2474–2486. doi: 10.1039/C7QM00254H. DOI

Jin Z. Yang H. Exploration of Zr–Metal–Organic Framework as Efficient Photocatalyst for Hydrogen Production. Nanoscale Res. Lett. 2017;12:539. doi: 10.1186/s11671-017-2311-6. PubMed DOI PMC

Kim J. et al., Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. J. Mater. Chem. A. 2017;5:15065–15072. doi: 10.1039/C7TA03356G. DOI

Park K. S. et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006;103:10186–10191. PubMed PMC

Jayakumar A. Antony R. P. Wang R. Lee J. MOF-Derived Hollow Cage Ni x Co 3− x O 4 and Their Synergy with Graphene for Outstanding Supercapacitors. Small. 2017;13:1603102. doi: 10.1002/smll.201603102. PubMed DOI

An Y. et al., Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 2020;400:125843. doi: 10.1016/j.cej.2020.125843. DOI

Zhong M. et al., Zeolitic imidazole framework derived composites of nitrogen-doped porous carbon and reduced graphene oxide as high-efficiency cathode catalysts for Li–O 2 batteries. Inorg. Chem. Front. 2017;4:1533–1538. doi: 10.1039/C7QI00314E. DOI

Zhang D. et al., Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv. 2015;5:58772–58776.

Wang P. Li Y. Li S. Liao X. Sun S. Water-promoted zeolitic imidazolate framework-67 transformation to Ni–Co layered double hydroxide hollow microsphere for supercapacitor electrode material. J. Mater. Sci.:Mater. Electron. 2017;28:9221–9227.

Wang S. et al., Time and temperature dependent multiple hierarchical NiCo2 O4 for high-performance supercapacitors. Dalton Trans. 2016;45:7469–7475. PubMed

Ahmad R. Khan U. A. Iqbal N. Noor T. Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview. RSC Adv. 2020;10:43733–43750. doi: 10.1039/D0RA08560J. PubMed DOI PMC

Wang X. et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI

Furukawa H. Cordova K. E. O'Keeffe M. Yaghi O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. PubMed DOI

Shao W. et al., Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. J. Mater. Chem. A. 2020;8:3168–3179. doi: 10.1039/C9TA12099H. DOI

Zhou Y. et al., MOF-derived Co3O4-C/Ni2P2O7 electrode material for high performance supercapacitors. Chem. Eng. J. 2019;378:122242. doi: 10.1016/j.cej.2019.122242. DOI

Wang X. Geng Q. Shi G. Zhang Y. Li D. MOF-derived yolk–shell Ni/C architectures assembled with Ni@C core–shell nanoparticles for lightweight microwave absorbents. CrystEngComm. 2020;22:6796–6804. doi: 10.1039/D0CE01242D. DOI

Arunpandiyan S. Vinoth S. Pandikumar A. Raja A. Arivarasan A. Decoration of CeO2 nanoparticles on hierarchically porous MnO2 nanorods and enhancement of supercapacitor performance by redox additive electrolyte. J. Alloys Compd. 2021;861:158456. doi: 10.1016/j.jallcom.2020.158456. DOI

Akhtar M. A. Chowdhury A. Chandra A. Addition of redox additives—synergic strategy for enhancing the electrochemical activity of spinel Co 3 O 4 based supercapacitors. J. Phys. D:Appl. Phys. 2019;52:155501. doi: 10.1088/1361-6463/ab00d3. DOI

Arunpandiyan S. et al., Significance of Redox Additive Electrolyte over Energy and Power Densities of Mixed Metal Vanadate-Based Supercapattery Device. ACS Appl. Electron. Mater. 2022;4:5884–5892. doi: 10.1021/acsaelm.2c01049. DOI

Frackowiak E. Meller M. Menzel J. Gastol D. Fic K. Redox-active electrolyte for supercapacitor application. Faraday Discuss. 2014;172:179–198. doi: 10.1039/C4FD00052H. PubMed DOI

Li Y. Wang G. Wei T. Fan Z. Yan P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy. 2016;19:165–175. doi: 10.1016/j.nanoen.2015.10.038. DOI

Wang G. Zhang L. Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012;41:797–828. doi: 10.1039/C1CS15060J. PubMed DOI

Forouzandeh P. Kumaravel V. Pillai S. C. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts. 2020;10:969. doi: 10.3390/catal10090969. DOI

Akinwolemiwa B. Peng C. Chen G. Z. Redox Electrolytes in Supercapacitors. J. Electrochem. Soc. 2015;162:A5054–A5059.

Ren L. et al., High capacitive property for supercapacitor using Fe 3+/Fe 2+ redox couple additive electrolyte. Electrochim. Acta. 2017;231:705–712. doi: 10.1016/j.electacta.2017.02.056. DOI

Pan Y. et al., Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. J. Am. Chem. Soc. 2018;140:2610–2618. doi: 10.1021/jacs.7b12420. PubMed DOI

Shrivastav V. et al., ZIF-67 derived Co3S4 hollow microspheres and WS2 nanorods as a hybrid electrode material for flexible 2V solid-state supercapacitor. Electrochim. Acta. 2020;345:136194.

Kaur A. et al., Waste Paper-Derived Porous Carbon Incorporated with Mesoporous ZIF-8 Crystals for Symmetrical Supercapacitors. Energy Fuels. 2023;37:11376–11387.

Liu C. et al., Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nat. Commun. 2020;11:4971. doi: 10.1038/s41467-020-18776-z. PubMed DOI PMC

Ha J. Jeon M. Park J. Kim J. Moon H. R. Effect of steric hindrance on the interfacial connection of MOF-on-MOF architectures. Nanoscale Adv. 2023;5:2111–2117. doi: 10.1039/D2NA00790H. PubMed DOI PMC

Wang H. et al., Effect of photo-doping on performance for solid-state dye-sensitized solar cell based on 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene and carbon counter electrode. Electrochim. Acta. 2013;99:238–241.

Schoeffert S. Thermal batteries modeling, self-discharge and self-heating. J. Power Sources. 2005;142:361–369.

Sundriyal S. Shrivastav V. Kaur H. Mishra S. Deep A. High-Performance Symmetrical Supercapacitor with a Combination of a ZIF-67/rGO Composite Electrode and a Redox Additive Electrolyte. ACS Omega. 2018;3:17348–17358. doi: 10.1021/acsomega.8b02065. PubMed DOI PMC

Akram A. et al., Ultrahigh performance asymmetric supercapacitor devices with synergetic interaction between metal organic frameworks/graphene nano platelets and redox additive electrolyte. J. Alloys Compd. 2022;891:161961. doi: 10.1016/j.jallcom.2021.161961. DOI

Sundriyal S. Shrivastav V. Sharma M. Mishra S. Deep A. Redox Additive Electrolyte Study of Mn–MOF Electrode for Supercapacitor Applications. ChemistrySelect. 2019;4:2585–2592. doi: 10.1002/slct.201900305. DOI

Genieser R. et al., Corrigendum to ‘Lithium ion batteries (NMC/graphite) cycling at 80 °C: Different electrolytes and related degradation mechanism’ [J. Power Sources 373 (2017) 172–183] J. Power Sources. 2018;382:198. doi: 10.1016/j.jpowsour.2018.02.044. DOI

Chen H. et al., Mesoporous ZnCo 2 O 4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSi x nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy. 2014;10:245–258. doi: 10.1016/j.nanoen.2014.09.020. DOI

Conway B. E., Electrochemical Supercapacitors, Springer US, Boston, MA, 1999, 10.1007/978-1-4757-3058-6 DOI

Simon P. Gogotsi Y. Dunn B. Where Do Batteries End and Supercapacitors Begin? Science. 2014;343:1210–1211. doi: 10.1126/science.1249625. PubMed DOI

Sharma M. Sundriyal S. Panwar A. K. Gaur A. Facile synthesis and electrochemical performance of Mg-substituted Ni1-xMgxCo2O4 mesoporous nanoflakes for energy storage applications. Electrochim. Acta. 2019;294:53–59. doi: 10.1016/j.electacta.2018.10.085. DOI

Augustyn V. Simon P. Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014;7:1597. doi: 10.1039/C3EE44164D. DOI

Chen J. et al., Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation. Carbon. 2011;49:3141–3147. doi: 10.1016/j.carbon.2011.03.045. DOI

Moseley P. T. High rate partial-state-of-charge operation of VRLA batteries. J. Power Sources. 2004;127:27–32. doi: 10.1016/j.jpowsour.2003.09.005. DOI

Zhao Y. Shah N. Brandon N. The Development and Application of a Novel Optimisation Strategy for Solid Oxide Fuel Cell-Gas Turbine Hybrid Cycles. Fuel Cells. 2010;10:181–193. doi: 10.1002/fuce.200900127. DOI

Gonçalves R. Lanceros-Méndez S. Costa C. M. Electrode fabrication process and its influence in lithium-ion battery performance: State of the art and future trends. Electrochem. Commun. 2022;135:107210. doi: 10.1016/j.elecom.2022.107210. DOI

Örüm Aydin A. et al., Lithium-Ion Battery Manufacturing: Industrial View on Processing Challenges, Possible Solutions and Recent Advances. Batteries. 2023;9:555. doi: 10.3390/batteries9110555. DOI

Xiong G. et al., Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 2018;9:790. doi: 10.1038/s41467-018-03112-3. PubMed DOI PMC

Pachfule P. Shinde D. Majumder M. Xu Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 2016;8:718–724. doi: 10.1038/nchem.2515. PubMed DOI

Hou X. et al., Metal Organic Framework Derived Core–Shell Structured Co 9 S 8 @N–C@MoS 2 Nanocubes for Supercapacitor. ACS Appl. Energy Mater. 2018;1:3513–3520. doi: 10.1021/acsaem.8b00773. DOI

Yi H. Wang H. Jing Y. Peng T. Wang X. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J. Power Sources. 2015;285:281–290. doi: 10.1016/j.jpowsour.2015.03.106. DOI

Yang Q. Liu Y. Yan M. Lei Y. Shi W. MOF-derived hierarchical nanosheet arrays constructed by interconnected NiCo-alloy@NiCo-sulfide core-shell nanoparticles for high-performance asymmetric supercapacitors. Chem. Eng. J. 2019;370:666–676. doi: 10.1016/j.cej.2019.03.239. DOI

Kumar S. Weng P.-H. Fu Y.-P. Core-shell-structured CuO@Ni-MOF: bifunctional electrode toward battery-type supercapacitors and oxygen evolution reaction. Mater. Today Chem. 2022;26:101159. doi: 10.1016/j.mtchem.2022.101159. DOI

Sundriyal S. Mishra S. Deep A. Study of Manganese-1,4-Benzenedicarboxylate Metal Organic Framework Electrodes Based Solid State Symmetrical Supercapacitor. Energy Procedia. 2019;158:5817–5824. doi: 10.1016/j.egypro.2019.01.546. DOI

Dillon A. C. Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chem. Rev. 2010;110:6856–6872. doi: 10.1021/cr9003314. PubMed DOI

Li W.-H. et al., Conductive Metal-Organic Framework Nanowire Array Electrodes for High-Performance Solid-State Supercapacitors. Adv. Funct. Mater. 2017;27:1702067. doi: 10.1002/adfm.201702067. DOI

Zhang Y. et al., Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv. 2015;5:58100–58106. doi: 10.1039/C5RA11597C. DOI

Zhang C. et al., Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A. 2016;4:16516–16523. doi: 10.1039/C6TA06314D. DOI

Liu Y. Li G. Guo Y. Ying Y. Peng X. Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT. ACS Appl. Mater. Interfaces. 2017;9:14043–14050. doi: 10.1021/acsami.7b03368. PubMed DOI

Hu C. et al., Core–shell crystalline ZIF-67@amorphous ZIF for high-performance supercapacitors. J. Mater. Sci. 2020;55:16360–16373. doi: 10.1007/s10853-020-05163-8. DOI

Xu J. Liu S. Liu Y. Co3O4/ZnO nanoheterostructure derived from core–shell ZIF-8@ZIF-67 for supercapacitors. RSC Adv. 2016;6:52137–52142. doi: 10.1039/C6RA07773K. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...