CaMKIIα hub ligands are unable to reverse known phenotypes in Angelman syndrome mice
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
NNF19SA0057841
Novo Nordisk Foundation
R277-2018-260
Lundbeck Foundation
PubMed
39668309
DOI
10.1111/bcpt.14112
Knihovny.cz E-resources
- Keywords
- (E)‐2‐(5‐hydroxy‐2‐phenyl‐5,7,8,9‐tetrahydro‐6H‐benzo[7]annulen‐6‐ylidene)acetic acid (Ph‐HTBA), 3‐hydroxycyclopent‐1‐enecarboxylic acid (HOCPCA), AS‐related behaviour, Angelman syndrome (AS), Ca2+/CaM‐dependent kinase II alpha (CaMKIIα), hub domain,
- MeSH
- Angelman Syndrome * drug therapy genetics MeSH
- Behavior, Animal drug effects MeSH
- Phenotype * MeSH
- Ligands MeSH
- Disease Models, Animal * MeSH
- Brain drug effects metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Neuroprotective Agents pharmacology MeSH
- Calcium-Calmodulin-Dependent Protein Kinase Type 2 * metabolism MeSH
- Ubiquitin-Protein Ligases metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Camk2a protein, mouse MeSH Browser
- Ligands MeSH
- Neuroprotective Agents MeSH
- Calcium-Calmodulin-Dependent Protein Kinase Type 2 * MeSH
- Ube3a protein, mouse MeSH Browser
- Ubiquitin-Protein Ligases MeSH
Angelman Syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of ubiquitin-protein ligase E3A (UBE3A), resulting in marked changes in synaptic plasticity. In AS mice, a dysregulation of Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) was previously described. This has been convincingly validated through genetic rescue of prominent phenotypes in mouse cross-breeding experiments. Selective ligands that specifically stabilize the CaMKIIα central association (hub) domain and affect different conformational states in vitro are now available. Two of these ligands, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) and (E)-2-(5-hydroxy-2-phenyl-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (Ph-HTBA), confer neuroprotection after ischemic stroke in mice where CaMKIIα is known to be dysregulated. Here, we sought to investigate whether pharmacological modulation with these prototypical CaMKIIα hub ligands presents a viable approach to alleviate AS symptoms. We performed an in vivo functional evaluation of AS mice treated for a total of 14 days with either HOCPCA or Ph-HTBA (7 days pre-treatment and 7 days of behavioural assessment). Both compounds were well-tolerated but unable to revert robust phenotypes of motor performance, anxiety, repetitive behaviour or seizures in AS mice. Biochemical experiments subsequently assessed CaMKIIα autophosphorylation in AS mouse brain tissue. Taken together our results indicate that pharmacological modulation of CaMKIIα via the selective hub ligands used here is not a viable treatment strategy in AS.
Department of Clinical Genetics Center of Expertise for Neurodevelopment Rotterdam The Netherlands
Department of Neuroscience Center of Expertise for Neurodevelopment Rotterdam The Netherlands
See more in PubMed
Kishino T, Lalande M, Wagstaff J. UBE3A/E6‐AP mutations cause Angelman syndrome. Nat Genet. 1997;15(1):70‐73. doi:10.1038/ng0197‐70
Angelman H. 'Puppet' children A report on three cases. Dev Med Child Neurol. 1965;7(6):681‐688. doi:10.1111/j.1469‐8749.1965.tb07844.x
Williams CA. The behavioral phenotype of the Angelman syndrome. Am J Med Genet C Semin Med Genet. 2010;154C(4):432‐437. doi:10.1002/ajmg.c.30278
Jiang YH, Armstrong D, Albrecht U, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long‐term potentiation. Neuron. 1998;21(4):799‐811. doi:10.1016/S0896‐6273(00)80596‐6
Sonzogni M, Wallaard I, Santos SS, et al. A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants. Mol Autism. 2018;9(1):47. doi:10.1186/s13229‐018‐0231‐7
Avagliano Trezza R, Sonzogni M, Bossuyt SNV, et al. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. Nat Neurosci. 2019;22(8):1235‐1247. doi:10.1038/s41593‐019‐0425‐0
Cao C, Rioult‐Pedotti MS, Migani P, et al. Impairment of TrkB‐PSD‐95 signaling in Angelman syndrome. PLoS Biol. 2013;11(2):e1001478. doi:10.1371/journal.pbio.1001478
Maranga C, Fernandes TG, Bekman E, da Rocha ST. Angelman syndrome: a journey through the brain. FEBS j. 2020;287(11):2154‐2175. doi:10.1111/febs.15258
Kaphzan H, Buffington SA, Ramaraj AB, et al. Genetic reduction of the α1 subunit of Na/K‐ATPase corrects multiple hippocampal phenotypes in angelman syndrome. Cell Rep. 2013;4(3):405‐412. doi:10.1016/j.celrep.2013.07.005
Kaphzan H, Hernandez P, Jung JI, et al. Reversal of impaired hippocampal long‐term potentiation and contextual fear memory deficits in angelman syndrome model mice by ErbB inhibitors. Biol Psychiatry. 2012;72(3):182‐190. doi:10.1016/j.biopsych.2012.01.021
Weeber EJ, Jiang YH, Elgersma Y, et al. Derangements of hippocampal calcium/calmodulin‐dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci. 2003;23(7):2634‐2644. doi:10.1523/jneurosci.23‐07‐02634.2003
Rotaru DC, Mientjes EJ, Elgersma Y. Angelman syndrome: from mouse models to therapy. Neuroscience. 2020;445:172‐189. doi:10.1016/j.neuroscience.2020.02.017
Elgersma Y, Sonzogni M. UBE3A reinstatement as a disease‐modifying therapy for Angelman syndrome. Dev Med Child Neurol. 2021;63(7):802‐807. doi:10.1111/dmcn.14831
Yashiro K, Riday TT, Condon KH, et al. Ube3a is required for experience‐dependent maturation of the neocortex. Nat Neurosci. 2009;12(6):777‐783. doi:10.1038/nn.2327
Tombes RM, Faison MO, Turbeville JM. Organization and evolution of multifunctional Ca2+/CaM‐ dependent protein kinase genes. Gene. 2003;322(1–2):17‐31. doi:10.1016/j.gene.2003.08.023
Hoelz A, Nairn AC, Kuriyan J. Crystal structure of a Tetradecameric assembly of the association domain of ca 2/calmodulin‐dependent kinase II. Mol Cell. 2003;11(5):1241‐1251. doi:10.1016/S1097‐2765(03)00171‐0
Stratton MM, Chao LH, Schulman H, Kuriyan J. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Curr Opin Struct Biol. 2013;23(2):292‐301. doi:10.1016/j.sbi.2013.04.002
Kuret J, Schulman H. Mechanism of autophosphorylation of the multifunctional Ca2+/calmodulin‐dependent protein kinase. J Biol Chem. 1985;260(10):6427‐6433. doi:10.1016/s0021‐9258(18)88990‐6
Hudmon A, Schulman H. Neuronal Ca2+/calmodulin‐dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2002;71(1):473‐510. doi:10.1146/annurev.biochem.71.110601.135410
Hudmon A, Schulman H. Structure‐function of the multifunctional Ca2+/calmodulin‐dependent protein kinase II. Biochem J. 2002;364(3):593‐611. doi:10.1042/bj20020228
Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha calcium‐calmodulin kinase II in LTP and learning. Science. 1998;279:870‐873. doi:10.1126/science.279.5352.870
Elgersma Y, Fedorov NB, Ikonen S, et al. Inhibitory autophosphorylation of CaMKII ontrols PSD association. Plast Learn. 2002;36(3):493‐505. doi:10.1016/S0896‐6273(02)01007‐3
Mayford M, Wang J, Kandel ER, O'Dell TJ. CaMKII regulates the frequency‐response function of hippocampal synapses for the production of both LTD and LTP. Cell. 1995;81(6):891‐904. doi:10.1016/0092‐8674(95)90009‐8
Lau KA, Yang X, Rioult‐Pedotti MS, et al. A PSD‐95 peptidomimetic mitigates neurological deficits in a mouse model of Angelman syndrome. Prog Neurobiol. 2023;230:102513. doi:10.1016/j.pneurobio.2023.102513
Van Woerden GM, Harris KD, Hojjati MR, et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nat Neurosci. 2007;10(3):280‐282. doi:10.1038/nn1845
Leurs U, Klein AB, Mcspadden ED, Griem‐krey N, Solbak SMØ. GHB analogs confer neuroprotection through specific interaction with the CaMKII α hub domain. PNAS. 2021;118(31). doi:10.1073/pnas.2108079118
Tian Y, Shehata MA, Gauger SJ, et al. Exploring the NCS‐382 scaffold for CaMKIIα modulation: synthesis, biochemical pharmacology, and biophysical characterization of Ph‐HTBA as a novel high‐affinity brain‐penetrant stabilizer of the CaMKIIα hub domain. J Med Chem. 2022;65(22):15066‐15084. doi:10.1021/acs.jmedchem.2c00805
Tian Y, Shehata MA, Gauger SJ, et al. Discovery and optimization of 5‐hydroxy‐diclofenac toward a new class of ligands with nanomolar affinity for the CaMKIIα hub domain. J Med Chem. 2022;65(9):6656‐6676. doi:10.1021/acs.jmedchem.1c02177
Sloutsky R, Dziedzic N, Dunn MJ, et al. Heterogeneity in human hippocampal CaMKII transcripts reveals allosteric hub‐dependent regulation. Sci Signal. 2020;13(641). doi:10.1126/SCISIGNAL.AAZ0240
Stratton M, Lee IH, Bhattacharyya M, et al. Activation‐triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. Elife. 2014;3:1‐28. doi:10.7554/elife.01610
Bhattacharyya M, Stratton MM, Going CC, et al. Molecular mechanism of activation‐triggered subunit exchange in Ca2+/calmodulin‐dependent protein kinase II. Elife. 2016;5:e13405. doi:10.7554/eLife.13405
Griem‐Krey N, Klein AB, Clausen BH, et al. The GHB analogue HOCPCA improves deficits in cognition and sensorimotor function after MCAO via CaMKIIα. J Cereb Blood Flow Metab. 2023;43(8):1419‐1434. doi:10.1177/0271678X231167920
Griem‐Krey N, Gauger SJ, Gowing EK, et al. The CaMKIIα hub ligand Ph‐HTBA promotes neuroprotection after focal ischemic stroke by a distinct molecular interaction. Biomed Pharmacother. 2022;156:113895. doi:10.1016/j.biopha.2022.113895
Vogensen SB, Marek A, Bay T, et al. New synthesis and tritium labeling of a selective ligand for studying high‐affinity γ‐hydroxybutyrate (GHB) binding sites. J Med Chem. 2013;56(20):8201‐8205. doi:10.1021/jm4011719
Wang T, van Woerden GM, Elgersma Y, Borst JGG. Enhanced transmission at the calyx of held synapse in a mouse model for angelman syndrome. Front Cell Neurosci. 2018;11:418. doi:10.3389/fncel.2017.00418
Tveden‐Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT 2023 policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2023;133(4):391‐396. doi:10.1787/9789264304796‐en‐accessed
Klein AB, Bay T, Villumsen IS, et al. Autoradiographic imaging and quantification of the high‐affinity GHB binding sites in rodent brain using 3H‐HOCPCA. Neurochem Int. 2016;100:138‐145. doi:10.1016/j.neuint.2016.09.002
Griem‐Krey N, Klein AB, Herth M, Wellendorph P. Autoradiography as a simple and powerful method for visualization and characterization of pharmacological targets. J vis Exp. 2019;(145). doi:10.3791/58879
Palmelund LB, van Woerden GM, Bräuner‐Osborne H, Wellendorph P. Development of a medium throughput whole‐cell microtiter plate Thr286 autophosphorylation assay for CaMKIIα using ELISA. J Pharmacol Toxicol Methods. 2022;118:107226. doi:10.1016/j.vascn.2022.107226
Griem‐Krey N, Frølund B, Marek A, Wellendorph P. Radiolabeled HOCPCA as a highly useful tool in drug discovery and pharmacology. J Labelled Comp Radiopharm. 2021;64(2):77‐81. doi:10.1002/jlcr.3870
Buiting K, Williams C, Horsthemke B. Angelman syndrome‐insights into a rare neurogenetic disorder. Nat Rev Neurol. 2016;12(10):584‐593. doi:10.1038/nrneurol.2016.133
Cruz E, Descalzi G, Steinmetz A, Scharfman HE, Katzman A, Alberini CM. CIM6P/IGF‐2 receptor ligands reverse deficits in Angelman syndrome model mice. Autism Res. 2021;14(1):29‐45. doi:10.1002/aur.2418
Liu XB, Murray KD. Neuronal excitability and calcium/calmodulin‐dependent protein kinase type II: location, location, location. Epilepsia. 2012;53(SUPPL. 1):45‐52. doi:10.1111/j.1528‐1167.2012.03474.x
Egawa K, Kitagawa K, Inoue K, et al. Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of angelman syndrome. Sci Transl Med. 2012;4(163):163ra157. doi:10.1126/scitranslmed.3004655
Sonzogni M, Hakonen J, Bernabé Kleijn M, et al. Delayed loss of UBE3A reduces the expression of Angelman syndrome‐associated phenotypes. Mol Autism. 2019;10(1):1‐9. doi:10.1186/s13229‐019‐0277‐1
Hansel C, de Jeu M, Belmeguenai A, et al. αCaMKII is essential for cerebellar LTD and motor learning. Neuron. 2006;51(6):835‐843. doi:10.1016/j.neuron.2006.08.013
Chia PH, Zhong FL, Niwa S, et al. A homozygous loss‐of‐function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability. Elife. 2018;7:e32451. doi:10.7554/eLife.32451
Elgersma Y, Sweatt JD, Giese KP. Mouse genetic approaches to investigating calcium/calmodulin‐dependent protein kinase II function in plasticity and cognition. J Neurosci. 2004;24(39):8410‐8415. doi:10.1523/JNEUROSCI.3622‐04.2004
Lisman JE, Zhabotinsky AM. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron. 2001;31(2):191‐201. doi:10.1016/s0896‐6273(01)00364‐6
Narayanan D, Larsen SG, Gauger SJ, et al. Ligand‐induced CaMKIIα hub Trp403 flip, hub domain stacking, and modulation of kinase activity. Protein Sci. 2024; 33(10):e5152. doi:10.1101/2024.03.26.586665
Thiesen L, Kehler J, Clausen RP, Frølund B, Bundgaard C, Wellendorph P. In vitro and in vivo evidence for active brain uptake of the GHB analog HOCPCA by the monocarboxylate transporter subtype 1. J Pharmacol Exp Ther. 2015;354(2):166‐174. doi:10.1124/jpet.115.224543
Silva‐Santos S, Van Woerden GM, Bruinsma CF, et al. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J Clin Invest. 2015;125(5):2069‐2076. doi:10.1172/JCI80554
Sonzogni M, Zhai P, Mientjes EJ, Van Woerden GM, Elgersma Y. Assessing the requirements of prenatal UBE3A expression for rescue of behavioral phenotypes in a mouse model for Angelman syndrome. Mol Autism. 2020;11(1):70. doi:10.1186/s13229‐020‐00376‐9
Rosell‐Valle C, Pedraza C, Manuel I, et al. Chronic central modulation of LPA/LPA receptors‐signaling pathway in the mouse brain regulates cognition, emotion, and hippocampal neurogenesis. Prog Neuro‐Psychopharmacol Biol Psychiatry. 2021;108:110156. doi:10.1016/j.pnpbp.2020.110156
Cook SG, Buonarati OR, Coultrap SJ, Bayer KU. CaMKII holoenzyme mechanisms that govern the LTP versus LTD decision. Sci Adv. 2021;7(16):eabe2300. doi:10.1126/sciadv.abe2300
Chang JY, Parra‐Bueno P, Laviv T, Szatmari EM, Lee SJR, Yasuda R. CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance. Neuron. 2017;94(4):800‐808.e4. doi:10.1016/j.neuron.2017.04.041
Goodell DJ, Benke TA, Bayer KU. Developmental restoration of LTP deficits in heterozygous CaMKIIα KO mice. J Neurophysiol. 2016;116(5):2140‐2151. doi:10.1152/jn.00518.2016
Deng G, Orfila JE, Dietz RM, et al. Autonomous CaMKII activity as a drug target for histological and functional neuroprotection after resuscitation from cardiac arrest. Cell Rep. 2017;18(5):1109‐1117. doi:10.1016/j.celrep.2017.01.011
Coultrap SJ, Vest RS, Ashpole NM, Hudmon A, Bayer KU. CaMKII in cerebral ischemia. Acta Pharmacol Sin. 2011;32(7):861‐872. doi:10.1038/aps.2011.68
Colbran RJ. Inactivation of Ca2+/calmodulin‐dependent protein kinase II by basal autophosphorylation. J Biol Chem. 1993;268(10):7163‐7170. doi:10.1016/s0021‐9258(18)53160‐4
Hanson PI, Schulman H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin‐dependent protein kinase analyzed by site‐directed mutagenesis. J Biol Chem. 1992;267(24):17216‐17224.