Improving Antimicrobial Properties of Biopolymer-Based Films in Food Packaging: Key Factors and Their Impact

. 2024 Nov 22 ; 25 (23) : . [epub] 20241122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39684290

Grantová podpora
31/010/SDU20/0006-10 Silesian University of Technology
04/040/RGJ24/0277 Silesian University of Technology

Biodegradable films derived from polysaccharides are increasingly considered eco-friendly alternatives to synthetic packaging in the food industry. The study's purpose was to improve the antimicrobial properties of biopolymer-based films made from starch, chitosan, alginate, and their blends (starch/chitosan and starch/alginate) and to evaluate the effects of modifiers, i.e., plant extracts, plasticizers, cross-linking agents, and nanofillers. Films were prepared via the Solution Casting Method and modified with various plasticizers, calcium chloride, oxidized sucrose, and nanofiber cellulose (NC). Chestnut, nettle, grape, and graviola extracts were tested for antimicrobial activity against Staphylococcus epidermidis, Escherichia coli, and Candida albicans. The film's mechanical and hydrophilic properties were studied as well. The chestnut extract showed the strongest antimicrobial properties, leading to its incorporation in all the films. The chitosan films displayed better antibacterial activity against Gram-positive than Gram-negative bacteria but were ineffective against C. albicans. NC significantly improved the mechanical and antimicrobial properties of the chitosan films. The alginate films, modified with various plasticizers cross-linked with calcium chloride, demonstrated the highest antimicrobial efficacy against E. coli. The starch films, cross-linked with oxidized sucrose, exhibited slightly lower antimicrobial resistance due to a more compact structure. Films such as ALG6 and ALG5, including plasticizers EPGOS and PGOS, respectively, indicated optimal hydrophilicity and mechanical properties and achieved the best antimicrobial performance against all the investigated microorganisms. All these findings highlight the potential of these biodegradable films for food packaging, offering enhanced antimicrobial activity that prolongs shelf life and reduces spoilage, making them promising candidates for sustainable food preservation.

Zobrazit více v PubMed

Ngo T.M.P., Nguyen T.H., Dang T.M.Q., Tran T.X., Rachtanapun P. Characteristics and Antimicrobial Properties of Active Edible Films Based on Pectin and Nanochitosan. Int. J. Mol. Sci. 2020;21:2224. doi: 10.3390/ijms21062224. PubMed DOI PMC

Akinsemolu A.A., Onyeaka H.N. Food Safety and Quality in the Global South. Springer Nature; Singapore: 2024. Microorganisms Associated with Food Spoilage and Foodborne Diseases; pp. 489–531.

Dilmaçünal T., Kuleaşan H. Food Safety and Preservation. Elsevier; Amsterdam, The Netherlands: 2018. Novel Strategies for the Reduction of Microbial Degradation of Foods; pp. 481–520.

Omerović N., Djisalov M., Živojević K., Mladenović M., Vunduk J., Milenković I., Knežević N.Ž., Gadjanski I., Vidić J. Antimicrobial Nanoparticles and Biodegradable Polymer Composites for Active Food Packaging Applications. Compr. Rev. Food Sci. Food Saf. 2021;20:2428–2454. doi: 10.1111/1541-4337.12727. PubMed DOI

Deng J., Zhu E.-Q., Xu G.-F., Naik N., Murugadoss V., Ma M.-G., Guo Z., Shi Z.-J. Overview of Renewable Polysaccharide-Based Composites for Biodegradable Food Packaging Applications. Green Chem. 2022;24:480–492. doi: 10.1039/D1GC03898B. DOI

Zhu F. Polysaccharide Based Films and Coatings for Food Packaging: Effect of Added Polyphenols. Food Chem. 2021;359:129871. doi: 10.1016/j.foodchem.2021.129871. PubMed DOI

Dursun Capar T. Characterization of Sodium Alginate-Based Biodegradable Edible Film Incorporated with Vitis Vinifera Leaf Extract: Nano-Scaled by Ultrasound-Assisted Technology. Food Packag. Shelf Life. 2023;37:101068. doi: 10.1016/j.fpsl.2023.101068. DOI

Hernández-Hernández F.A., Gómez-Aldapa C.A., Castro-Rosas J., Vargas-León E.A., Gutierrez M.C., Velazquez G., Jiménez-Regalado E.J., Aguirre-Loredo R.Y. Hibiscus Sabdariffa L. Extract as a Natural Additive in Food Packaging Biodegradable Films to Improve Antioxidant, Antimicrobial, and Physicochemical Properties. Plant Foods Human. Nutr. 2024;79:285–291. doi: 10.1007/s11130-024-01189-4. PubMed DOI

Ma M., Gu M., Zhang S., Yuan Y. Effect of Tea Polyphenols on Chitosan Packaging for Food Preservation: Physicochemical Properties, Bioactivity, and Nutrition. Int. J. Biol. Macromol. 2024;259:129267. doi: 10.1016/j.ijbiomac.2024.129267. PubMed DOI

Elmehbad N.Y., Mohamed N.A., Abd El-Ghany N.A., Abdel-Aziz M.M. Reinforcement of the Antimicrobial Activity and Biofilm Inhibition of Novel Chitosan-Based Hydrogels Utilizing Zinc Oxide Nanoparticles. Int. J. Biol. Macromol. 2023;246:125582. doi: 10.1016/j.ijbiomac.2023.125582. PubMed DOI

da Costa Brito S., Pereira V.A.C., Prado A.C.F., Tobias T.J., Paris E.C., Ferreira M.D. Antimicrobial Potential of Linear Low-Density Polyethylene Food Packaging with Ag Nanoparticles in Different Carriers (Silica and Hydroxyapatite) J. Microbiol. Methods. 2024;217–218:106873. doi: 10.1016/j.mimet.2023.106873. PubMed DOI

Ponnusamy A., Rajasree S.R.R., Rajan R., Ashraf F. Chitosan Silver Nanoparticle Inspired Seaweed (Gracilaria Crassa) Biodegradable Films for Seafood Packaging. Algal Res. 2024;78:103429. doi: 10.1016/j.algal.2024.103429. DOI

Alqarni L.S., Alghamdi A.M., Elamin N.Y., Rajeh A. Enhancing the Optical, Electrical, Dielectric Properties and Antimicrobial Activity of Chitosan/Gelatin Incorporated with Co-Doped ZnO Nanoparticles: Nanocomposites for Use in Energy Storage and Food Packaging. J. Mol. Struct. 2024;1297:137011. doi: 10.1016/j.molstruc.2023.137011. DOI

Mirres A.C.d.M., Vieira I.R.S., Tessaro L., da Silva B.D., de Andrade J.C., da Silva A.A., Carvalho N.M.F., de Sousa A.M.F., Conte-Junior C.A. Nanocomposite Films of Babassu Coconut Mesocarp and Green ZnO Nanoparticles for Application in Antimicrobial Food Packaging. Foods. 2024;13:1895. doi: 10.3390/foods13121895. PubMed DOI PMC

Gao Y., Fan M., Cheng X., Liu X., Yang H., Ma W., Guo M., Li L. Deep Eutectic Solvent: Synthesis, Classification, Properties and Application in Macromolecular Substances. Int. J. Biol. Macromol. 2024:134593. doi: 10.1016/j.ijbiomac.2024.134593. PubMed DOI

Yu J., Xu S., Chen R., Shao P. A Promising Bioactive Chitosan Film in Strawberry Fresh-Keeping: Plasticized with Tomato Processing by-Product Extract of Deep Eutectic Solvent. Food Hydrocoll. 2024;151:109859. doi: 10.1016/j.foodhyd.2024.109859. DOI

Jiang G., He K., Chen M., Yang L., Yang Y., Tang T., Tian Y. Improvement of Mechanical and Bioactive Properties of Chitosan Films Plasticized with Novel Thymol-Based Deep Eutectic Solvents. Food Hydrocoll. 2025;158:110480. doi: 10.1016/j.foodhyd.2024.110480. DOI

Revutskaya N., Polishchuk E., Kozyrev I., Fedulova L., Krylova V., Pchelkina V., Gustova T., Vasilevskaya E., Karabanov S., Kibitkina A., et al. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers. 2024;16:1976. doi: 10.3390/polym16141976. PubMed DOI PMC

Silva V., Falco V., Dias M.I., Barros L., Silva A., Capita R., Alonso-Calleja C., Amaral J.S., Igrejas G., Ferreira I.C.F.R., et al. Evaluation of the Phenolic Profile of Castanea Sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants. 2020;9:87. doi: 10.3390/antiox9010087. PubMed DOI PMC

Mohammadian M., Biregani Z.M., Hassanloofard Z., Salami M. Nettle (Urtica Dioica L.) as a Functional Bioactive Food Ingredient: Applications in Food Products and Edible Films, Characterization, and Encapsulation Systems. Trends Food Sci. Technol. 2024;147:104421. doi: 10.1016/j.tifs.2024.104421. DOI

Ivanov Y., Godjevargova T. Antimicrobial Polymer Films with Grape Seed and Skin Extracts for Food Packaging. Microorganisms. 2024;12:1378. doi: 10.3390/microorganisms12071378. PubMed DOI PMC

Srikandace Y. Indriyati Antioxidant Activity of Biocellulose-Based Films Incorporated with Powder of Soursop Leaves (Annona Muricata L) IOP Conf. Ser. Earth Environ. Sci. 2019;277:012005. doi: 10.1088/1755-1315/277/1/012005. DOI

Janik W., Nowotarski M., Ledniowska K., Shyntum D.Y., Krukiewicz K., Turczyn R., Sabura E., Furgoł S., Kudła S., Dudek G. Modulation of Physicochemical Properties and Antimicrobial Activity of Sodium Alginate Films through the Use of Chestnut Extract and Plasticizers. Sci. Rep. 2023;13:11530. doi: 10.1038/s41598-023-38794-3. PubMed DOI PMC

Wang X., Li Y., Liu S., Wang H., Chang X., Zhang J. Chestnut Shell Polyphenols Inhibit the Growth of Three Food-Spoilage Bacteria by Regulating Key Enzymes of Metabolism. Foods. 2023;12:3312. doi: 10.3390/foods12173312. PubMed DOI PMC

Štumpf S., Hostnik G., Primožič M., Leitgeb M., Salminen J.-P., Bren U. The Effect of Growth Medium Strength on Minimum Inhibitory Concentrations of Tannins and Tannin Extracts against E. coli. Molecules. 2020;25:2947. doi: 10.3390/molecules25122947. PubMed DOI PMC

Đurović S., Kojić I., Radić D., Smyatskaya Y.A., Bazarnova J.G., Filip S., Tosti T. Chemical Constituents of Stinging Nettle (Urtica Dioica L.): A Comprehensive Review on Phenolic and Polyphenolic Compounds and Their Bioactivity. Int. J. Mol. Sci. 2024;25:3430. doi: 10.3390/ijms25063430. PubMed DOI PMC

Delgado Y., Cassé C., Ferrer-Acosta Y., Suárez-Arroyo I.J., Rodríguez-Zayas J., Torres A., Torres-Martínez Z., Pérez D., González M.J., Velázquez-Aponte R.A., et al. Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. Appl. Sci. 2021;11:8477. doi: 10.3390/app11188477. DOI

Aires A., Carvalho R., Saavedra M.J. Valorization of Solid Wastes from Chestnut Industry Processing: Extraction and Optimization of Polyphenols, Tannins and Ellagitannins and Its Potential for Adhesives, Cosmetic and Pharmaceutical Industry. Waste Manag. 2016;48:457–464. doi: 10.1016/j.wasman.2015.11.019. PubMed DOI

Vekiari S.A., Gordon M.H., García-Macías P., Labrinea H. Extraction and Determination of Ellagic Acid Contentin Chestnut Bark and Fruit. Food Chem. 2008;110:1007–1011. doi: 10.1016/j.foodchem.2008.02.005. PubMed DOI

Pinto N., de C.C., Campos L.M., Evangelista A.C.S., Lemos A.S.O., Silva T.P., Melo R.C.N., de Lourenço C.C., Salvador M.J., Apolônio A.C.M., et al. Antimicrobial Annona Muricata L. (Soursop) Extract Targets the Cell Membranes of Gram-Positive and Gram-Negative Bacteria. Ind. Crops Prod. 2017;107:332–340. doi: 10.1016/j.indcrop.2017.05.054. DOI

Flórez M., Cazón P., Vázquez M. Characterization of Active Films of Chitosan Containing Nettle Urtica Dioica L. Extract: Spectral and Water Properties, Microstructure, and Antioxidant Activity. Int. J. Biol. Macromol. 2023;253:127318. doi: 10.1016/j.ijbiomac.2023.127318. PubMed DOI

Oliveira D.A., Salvador A.A., Smânia A., Smânia E.F.A., Maraschin M., Ferreira S.R.S. Antimicrobial Activity and Composition Profile of Grape (Vitis Vinifera) Pomace Extracts Obtained by Supercritical Fluids. J. Biotechnol. 2013;164:423–432. doi: 10.1016/j.jbiotec.2012.09.014. PubMed DOI

Elez Garofulić I., Malin V., Repajić M., Zorić Z., Pedisić S., Sterniša M., Smole Možina S., Dragović-Uzelac V. Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques. Molecules. 2021;26:6153. doi: 10.3390/molecules26206153. PubMed DOI PMC

Sterniša M., Bucar F., Kunert O., Smole Možina S. Targeting Fish Spoilers Pseudomonas and Shewanella with Oregano and Nettle Extracts. Int. J. Food Microbiol. 2020;328:108664. doi: 10.1016/j.ijfoodmicro.2020.108664. PubMed DOI

Qin C., Li H., Xiao Q., Liu Y., Zhu J., Du Y. Water-Solubility of Chitosan and Its Antimicrobial Activity. Carbohydr. Polym. 2006;63:367–374. doi: 10.1016/j.carbpol.2005.09.023. DOI

Hosseinnejad M., Jafari S.M. Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. Int. J. Biol. Macromol. 2016;85:467–475. doi: 10.1016/j.ijbiomac.2016.01.022. PubMed DOI

Wang H., Qian J., Ding F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018;66:395–413. doi: 10.1021/acs.jafc.7b04528. PubMed DOI

Jiang A., Patel R., Padhan B., Palimkar S., Galgali P., Adhikari A., Varga I., Patel M. Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polymers. 2023;15:2235. doi: 10.3390/polym15102235. PubMed DOI PMC

Chandrasekaran M., Kim K., Chun S. Antibacterial Activity of Chitosan Nanoparticles: A Review. Processes. 2020;8:1173. doi: 10.3390/pr8091173. DOI

Duan C., Meng X., Meng J., Khan I.H., Dai L., Khan A., An X., Zhang J., Huq T., Ni Y. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. J. Bioresour. Bioprod. 2019;4:11–21. doi: 10.21967/jbb.v4i1.189. DOI

Kumar S., Mukherjee A., Dutta J. Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives. Trends Food Sci. Technol. 2020;97:196–209. doi: 10.1016/j.tifs.2020.01.002. DOI

Wang M., Wei Z., Zhang Z. Antimicrobial Edible Films for Food Preservation: Recent Advances and Future Trends. Food Bioproc Tech. 2024;17:1391–1411. doi: 10.1007/s11947-023-03178-y. DOI

Wang X., Zhang H., Zhang X., Shen C., Liu M., Liu S., Han Y., He T. A Comparison Study on Effects of Polyglycerols on Physical Properties of Alginate Films. Int. J. Biol. Macromol. 2024;254:127879. doi: 10.1016/j.ijbiomac.2023.127879. PubMed DOI

Motelica L., Ficai D., Oprea O., Ficai A., Trusca R.-D., Andronescu E., Holban A.M. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics. 2021;13:1020. doi: 10.3390/pharmaceutics13071020. PubMed DOI PMC

Singh P., Kaur G., Singh A., Sharma T., Dar B.N. Improved Mechanical, Functional and Antimicrobial Properties of Corn Starch-Based Biodegradable Nanocomposites Films Reinforced with Lemongrass Oil Nanoemulsion and Starch Nano-Crystal. Mater. Chem. Phys. 2023;308:128267. doi: 10.1016/j.matchemphys.2023.128267. DOI

Kalateh-Seifari F., Yousefi S., Ahari H., Hosseini S.H. Corn Starch-Chitosan Nanocomposite Film Containing Nettle Essential Oil Nanoemulsions and Starch Nanocrystals: Optimization and Characterization. Polymers. 2021;13:2113. doi: 10.3390/polym13132113. PubMed DOI PMC

Alves Z., Ferreira N.M., Ferreira P., Nunes C. Design of Heat Sealable Starch-Chitosan Bioplastics Reinforced with Reduced Graphene Oxide for Active Food Packaging. Carbohydr. Polym. 2022;291:119517. doi: 10.1016/j.carbpol.2022.119517. PubMed DOI

Rahman M., Shahid A., Hossain T., Sheikh S., Rahman S., Uddin N., Rahim A., Khan R.A., Hossain I. Sources, Extractions, and Applications of Alginate: A Review. Discov. Appl. Sci. 2024;6:443. doi: 10.1007/s42452-024-06151-2. DOI

Zhang M., Chen H. Development and Characterization of Starch-sodium Alginate-Montmorillonite Biodegradable Antibacterial Films. Int. J. Biol. Macromol. 2023;233:123462. doi: 10.1016/j.ijbiomac.2023.123462. PubMed DOI

Yoon B., Jackman J., Valle-González E., Cho N.-J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018;19:1114. doi: 10.3390/ijms19041114. PubMed DOI PMC

Kester J.F.O. Edible Films and Coatings: A Review. Food Technol. 1986;40:47–59.

Hong S., Han J.H., Krochta J.M. Optical and Surface Properties of Whey Protein Isolate Coatings on Plastic Films as Influenced by Substrate, Protein Concentration, and Plasticizer Type. J. Appl. Polym. Sci. 2004;92:335–343. doi: 10.1002/app.20007. DOI

Muscat D., Adhikari B., Adhikari R., Chaudhary D.S. Comparative Study of Film Forming Behaviour of Low and High Amylose Starches Using Glycerol and Xylitol as Plasticizers. J. Food Eng. 2012;109:189–201. doi: 10.1016/j.jfoodeng.2011.10.019. DOI

Bouftou A., Aghmih K., Lakhdar F., Abidi N., Gmouh S., Majid S. Enhancing Cellulose Acetate Film with Green Plasticizers for Improved Performance, Biodegradability, and Migration Study into a Food Simulant. Meas. Food. 2024;15:100180. doi: 10.1016/j.meafoo.2024.100180. DOI

Yaman M., Yildiz S., Özdemir A., Yemiş G.P. Multicomponent System for Development of Antimicrobial PLA-Based Films with Enhanced Physical Characteristics. Int. J. Biol. Macromol. 2024;262:129832. doi: 10.1016/j.ijbiomac.2024.129832. PubMed DOI

Rajamma S.B., Raj A., Kalampalath V., Eapen S.J. Elucidation of Antibacterial Effect of Calcium Chloride against Ralstonia Pseudosolanacearum Race 4 Biovar 3 Infecting Ginger (Zingiber Officinale Rosc.) Arch. Microbiol. 2021;203:663–671. doi: 10.1007/s00203-020-02052-1. PubMed DOI

Janik W., Nowotarski M., Shyntum D.Y., Banaś A., Krukiewicz K., Kudła S., Dudek G. Antibacterial and Biodegradable Polysaccharide-Based Films for Food Packaging Applications: Comparative Study. Materials. 2022;15:3236. doi: 10.3390/ma15093236. PubMed DOI PMC

Zhang W., Roy S., Ezati P., Yang D.-P., Rhim J.-W. Tannic Acid: A Green Crosslinker for Biopolymer-Based Food Packaging Films. Trends Food Sci. Technol. 2023;136:11–23. doi: 10.1016/j.tifs.2023.04.004. DOI

Yan W., Shi M., Dong C., Liu L., Gao C. Applications of Tannic Acid in Membrane Technologies: A Review. Adv. Colloid. Interface Sci. 2020;284:102267. doi: 10.1016/j.cis.2020.102267. PubMed DOI

Khan A., Gallah H., Riedl B., Bouchard J., Safrany A., Lacroix M. Genipin Cross-Linked Antimicrobial Nanocomposite Films and Gamma Irradiation to Prevent the Surface Growth of Bacteria in Fresh Meats. Innov. Food Sci. Emerg. Technol. 2016;35:96–102. doi: 10.1016/j.ifset.2016.03.011. DOI

Yadav M., Maurya A.K., Behera K., Chiu F.-C., Rhee K.Y. Physical Properties of Cellulose Nanocrystal/Magnesium Oxide/Chitosan Transparent Composite Films for Packaging Applications. Int. J. Biol. Macromol. 2024;264:130560. doi: 10.1016/j.ijbiomac.2024.130560. PubMed DOI

Zou Z., Ismail B.B., Zhang X., Yang Z., Liu D., Guo M. Improving Barrier and Antibacterial Properties of Chitosan Composite Films by Incorporating Lignin Nanoparticles and Acylated Soy Protein Isolate Nanogel. Food Hydrocoll. 2023;134:108091. doi: 10.1016/j.foodhyd.2022.108091. DOI

Biratu G., Woldemariam H.W., Gonfa G. Development of Active Edible Films from Coffee Pulp Pectin, Propolis, and Honey with Improved Mechanical, Functional, Antioxidant, and Antimicrobial Properties. Carbohydr. Polym. Technol. Appl. 2024;8:100557. doi: 10.1016/j.carpta.2024.100557. DOI

Sun J., Rutherford S.T., Silhavy T.J., Huang K.C. Physical Properties of the Bacterial Outer Membrane. Nat. Rev. Microbiol. 2022;20:236–248. doi: 10.1038/s41579-021-00638-0. PubMed DOI PMC

Ali A., Chen Y., Liu H., Yu L., Baloch Z., Khalid S., Zhu J., Chen L. Starch-Based Antimicrobial Films Functionalized by Pomegranate Peel. Int. J. Biol. Macromol. 2019;129:1120–1126. doi: 10.1016/j.ijbiomac.2018.09.068. PubMed DOI

Aloui H., Deshmukh A.R., Khomlaem C., Kim B.S. Novel Composite Films Based on Sodium Alginate and Gallnut Extract with Enhanced Antioxidant, Antimicrobial, Barrier and Mechanical Properties. Food Hydrocoll. 2021;113:106508. doi: 10.1016/j.foodhyd.2020.106508. DOI

Abutalib M.M., Rajeh A. Enhanced Structural, Electrical, Mechanical Properties and Antibacterial Activity of Cs/PEO Doped Mixed Nanoparticles (Ag/TiO2) for Food Packaging Applications. Polym. Test. 2021;93:107013. doi: 10.1016/j.polymertesting.2020.107013. DOI

Mathew S., Brahmakumar M., Abraham T.E. Microstructural Imaging and Characterization of the Mechanical, Chemical, Thermal, and Swelling Properties of Starch–Chitosan Blend Films. Biopolymers. 2006;82:176–187. doi: 10.1002/bip.20480. PubMed DOI

Giz A.S., Berberoglu M., Bener S., Aydelik-Ayazoglu S., Bayraktar H., Alaca B.E., Catalgil-Giz H. A Detailed Investigation of the Effect of Calcium Crosslinking and Glycerol Plasticizing on the Physical Properties of Alginate Films. Int. J. Biol. Macromol. 2020;148:49–55. doi: 10.1016/j.ijbiomac.2020.01.103. PubMed DOI

Ma Y., Cao X., Feng X., Ma Y., Zou H. Fabrication of Super-Hydrophobic Film from PMMA with Intrinsic Water Contact Angle below 90°. Polym. Guildf. 2007;48:7455–7460. doi: 10.1016/j.polymer.2007.10.038. DOI

Lakovaara M., Sirviö J.A., Ismail M.Y., Liimatainen H., Sliz R. Hydrophobic Modification of Nanocellulose and All-Cellulose Composite Films Using Deep Eutectic Solvent as a Reaction Medium. Cellulose. 2021;28:5433–5447. doi: 10.1007/s10570-021-03863-1. DOI

Correlo V.M., Pinho E.D., Pashkuleva I., Bhattacharya M., Neves N.M., Reis R.L. Water Absorption and Degradation Characteristics of Chitosan-Based Polyesters and Hydroxyapatite Composites. Macromol. Biosci. 2007;7:354–363. doi: 10.1002/mabi.200600233. PubMed DOI

Freier T., Koh H.S., Kazazian K., Shoichet M.S. Controlling Cell Adhesion and Degradation of Chitosan Films by N-Acetylation. Biomaterials. 2005;26:5872–5878. doi: 10.1016/j.biomaterials.2005.02.033. PubMed DOI

Arica B., Çaliş S., Atİlla P., Durlu N.T., Çakar N., Kaş H.S., Hincal A.A. In Vitro and in Vivo Studies of Ibuprofen-Loaded Biodegradable Alginate Beads. J. Microencapsul. 2005;22:153–165. doi: 10.1080/02652040400026319. PubMed DOI

Azevedo H.S., Reis R.L. Encapsulation of α-Amylase into Starch-Based Biomaterials: An Enzymatic Approach to Tailor Their Degradation Rate. Acta Biomater. 2009;5:3021–3030. doi: 10.1016/j.actbio.2009.04.039. PubMed DOI

Wang P., Sheng F., Tang S.W., ud-Din Z., Chen L., Nawaz A., Hu C., Xiong H. Synthesis and Characterization of Corn Starch Crosslinked with Oxidized Sucrose. Starch-Stärke. 2018:1800152. doi: 10.1002/star.201800152. DOI

Margesin R., Feller G. Biotechnological Applications of Psychrophiles. Environ. Technol. 2010;31:835–844. doi: 10.1080/09593331003663328. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...