• This record comes from PubMed

Resistome in the indoor dust samples from workplaces and households: a pilot study

. 2024 ; 14 () : 1484100. [epub] 20241203

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals.

See more in PubMed

Abdelrahman D. N., Taha A. A., Dafaallah M. M., Mohammed A. A., El Hussein A. R. M., Hashim A. I., et al. . (2020). [amp]]beta;-lactamases (bla TEM, bla SHV, bla CTXM-1, bla VEB, bla OXA-1) and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study. F1000Research 9, 774. doi: 10.12688/f1000research.24818.3 PubMed DOI PMC

Acman M., Wang R., van Dorp L., Shaw L. P., Wang Q., Luhmann N., et al. . (2022). Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene blaNDM. Nat. Commun. 13, 1131. doi: 10.1038/s41467-022-28819-2 PubMed DOI PMC

Allemann A., Kraemer J. G., Korten I., Ramsey K., Casaulta C., Wüthrich D., et al. . (2019). Nasal resistome development in infants with cystic fibrosis in the first year of life. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.00212 PubMed DOI PMC

An X.-L., Xu J.-X., Xu M.-R., Zhao C.-X., Li H., Zhu Y.-G., et al. . (2023). Dynamics of microbial community and potential microbial pollutants in shopping malls. mSystems 8, e00576–e00522. doi: 10.1128/msystems.00576-22 PubMed DOI PMC

Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (Accessed June 29, 2024).

Ayobami O., Willrich N., Harder T., Okeke I. N., Eckmanns T., Markwart R. (2019). The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerg. Microbes Infect. 8, 1747–1759. doi: 10.1080/22221751.2019.1698273 PubMed DOI PMC

Bagra K., Kneis D., Padfield D., Szekeres E., Teban-Man A., Coman C., et al. . (2024). Contrary effects of increasing temperatures on the spread of antimicrobial resistance in river biofilms. mSphere 9, e00573–e00523. doi: 10.1128/msphere.00573-23 PubMed DOI PMC

Bai H., He L.-Y., Wu D.-L., Gao F.-Z., Zhang M., Zou H.-Y., et al. . (2022). Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environ. Int. 158, 106927. doi: 10.1016/j.envint.2021.106927 PubMed DOI

Barberán A., Ladau J., Leff J. W., Pollard K. S., Menninger H. L., Dunn R. R., et al. . (2015). Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. U. S. A 112, 5756–5761. doi: 10.1073/pnas.1420815112 PubMed DOI PMC

Bich V. T. N., Thanh L. V., Thai P. D., Van Phuong T. T., Oomen M., Driessen C., et al. . (2019). An exploration of the gut and environmental resistome in a community in northern Vietnam in relation to antibiotic use. Antimicrob. Resist. Infect. Control 8, 1–10. doi: 10.1186/s13756-019-0645-9 PubMed DOI PMC

Boissy R. J., Romberger D. J., Roughead W. A., Weissenburger-Moser L., Poole J. A., LeVan T. D. (2014). Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities. PloS One 9, e95578. doi: 10.1371/journal.pone.0095578 PubMed DOI PMC

Bonadonna L., Briancesco R., Coccia A. M. (2017). Analysis of microorganisms in hospital environments and potential risks. Indoor Air Qual. Healthc. Facil, 53–62. doi: 10.1007/978-3-319-49160-8_5 DOI

Brink A. J. (2019). Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 32, 609–616. doi: 10.1097/QCO.0000000000000608 PubMed DOI

Cain A. K., Hamidian M. (2023). Portrait of a killer: Uncovering resistance mechanisms and global spread of Acinetobacter baumannii. PloS Pathog. 19, e1011520. doi: 10.1371/journal.ppat.1011520 PubMed DOI PMC

Carr V. R., Witherden E. A., Lee S., Shoaie S., Mullany P., Proctor G. B., et al. . (2020). Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat. Commun. 11, 693. doi: 10.1038/s41467-020-14422-w PubMed DOI PMC

Chauhan B. V., Higgins Jones D., Banerjee G., Agrawal S., Sulaiman I. M., Jia C., et al. . (2023). Indoor bacterial and fungal burden in “Moldy” versus “Non-moldy” Homes: A case study employing advanced sequencing techniques in a US metropolitan area. Pathogens 12, 1006. doi: 10.3390/pathogens12081006 PubMed DOI PMC

Chen S., Zhou Y., Chen Y., Gu J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinforma. Oxf. Engl. 34, i884–i890. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC

Chng K. R., Li C., Bertrand D., Ng A. H. Q., Kwah J. S., Low H. M., et al. . (2020). Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat. Med. 26, 941–951. doi: 10.1038/s41591-020-0894-4 PubMed DOI PMC

Christoff A. P., Sereia A. F., Hernandes C., de Oliveira L. F. (2019). Uncovering the hidden microbiota in hospital and built environments: New approaches and solutions. Exp. Biol. Med. 244, 534–542. doi: 10.1177/1535370218821857 PubMed DOI PMC

Codjoe F. S., Donkor E. S. (2017). Carbapenem resistance: A review. Med. Sci. 6, 1. doi: 10.3390/medsci6010001 PubMed DOI PMC

Corvec S., Dagnelie M.-A., Khammari A., Dréno B. (2019). Taxonomy and phylogeny of Cutibacterium (formerly Propionibacterium) acnes in inflammatory skin diseases. Ann. Dermatol. Venereol 146, 26–30. doi: 10.1016/j.annder.2018.11.002 PubMed DOI

Daw Elbait G., Daou M., Abuoudah M., Elmekawy A., Hasan S. W., Everett D. B., et al. . (2024). Comparison of qPCR and metagenomic sequencing methods for quantifying antibiotic resistance genes in wastewater. PloS One 19, e0298325. doi: 10.1371/journal.pone.0298325 PubMed DOI PMC

Ding L.-J., Zhou X.-Y., Zhu Y.-G. (2020). Microbiome and antibiotic resistome in household dust from Beijing, China. Environ. Int. 139, 105702. doi: 10.1016/j.envint.2020.105702 PubMed DOI

Escudeiro P., Pothier J., Dionisio F., Nogueira T. (2019). Antibiotic resistance gene diversity and virulence gene diversity are correlated in human gut and environmental microbiomes. mSphere 4, e00135–e00119. doi: 10.1128/mSphere.00135-19 PubMed DOI PMC

Ewels P., Magnusson M., Lundin S., Käller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma. Oxf. Engl. 32, 3047–3048. doi: 10.1093/bioinformatics/btw354 PubMed DOI PMC

Feng T., Han Q., Su W., Yu Q., Yang J., Li H. (2022). Microbiota and mobile genetic elements influence antibiotic resistance genes in dust from dense urban public places. Environ. pollut. 311, 119991. doi: 10.1016/j.envpol.2022.119991 PubMed DOI

Fernández-Billón M., Llambías-Cabot A. E., Jordana-Lluch E., Oliver A., Macià M. D. (2023). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 5, 100129. doi: 10.1016/j.bioflm.2023.100129 PubMed DOI PMC

Forslund K., Sunagawa S., Coelho L. P., Bork P. (2014). Metagenomic insights into the human gut resistome and the forces that shape it. BioEssays 36, 316–329. doi: 10.1002/bies.201300143 PubMed DOI

Forslund K., Sunagawa S., Kultima J. R., Mende D. R., Arumugam M., Typas A., et al. . (2013). Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 23, 1163–1169. doi: 10.1101/gr.155465.113 PubMed DOI PMC

Frye J. G., Jackson C. R. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 4. doi: 10.3389/fmicb.2013.00135 PubMed DOI PMC

Fu X., Ou Z., Zhang M., Meng Y., Li Y., Wen J., et al. . (2021). Indoor bacterial, fungal and viral species and functional genes in urban and rural schools in Shanxi Province, China–association with asthma, rhinitis and rhinoconjunctivitis in high school students. Microbiome 9, 1–16. doi: 10.1186/s40168-021-01091-0 PubMed DOI PMC

Gu Z., Eils R., Schlesner M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinforma. Oxf. Engl. 32, 2847–2849. doi: 10.1093/bioinformatics/btw313 PubMed DOI

Gupta M., Lee S., Bisesi M., Lee J. (2019). Indoor microbiome and antibiotic resistance on floor surfaces: an exploratory study in three different building types. Int. J. Environ. Res. Public. Health 16, 4160. doi: 10.3390/ijerph16214160 PubMed DOI PMC

Gwenzi W., Siyawamwaya M. (2022). “Chapter 17 - The environmental resistome: Human exposure, health risks, and research needs,” in Emerging Contaminants in the Terrestrial-Aquatic-Atmosphere Continuum. Ed. Gwenzi W. (Amsterdam, The Netherlands: Elsevier; ), 307–322. doi: 10.1016/B978-0-323-90051-5.00001-8 DOI

Habibi N., Uddin S., Behbehani M., Kishk M., Abdul Razzack N., Zakir F., et al. . (2023). Antibiotic resistance genes in aerosols: baseline from Kuwait. Int. J. Mol. Sci. 24, 6756. doi: 10.3390/ijms24076756 PubMed DOI PMC

Hammoudi Halat D., Ayoub Moubareck C. (2020). The current burden of carbapenemases: review of significant properties and dissemination among gram-negative bacteria. Antibiot. Basel Switz 9, 186. doi: 10.3390/antibiotics9040186 PubMed DOI PMC

Hartmann E. M., Hickey R., Hsu T., Betancourt Román C. M., Chen J., Schwager R., et al. . (2016). Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome. Environ. Sci. Technol. 50, 9807–9815. doi: 10.1021/acs.est.6b00262 PubMed DOI PMC

Hewitt K. M., Gerba C. P., Maxwell S. L., Kelley S. T. (2012). Office space bacterial abundance and diversity in three metropolitan areas. PloS One 7 (5), e37849. doi: 10.1371/journal.pone.0037849 PubMed DOI PMC

Hullegie S., Venekamp R. P., van Dongen T. M. A., Hay A. D., Moore M. V., Little P., et al. . (2021). Prevalence and antimicrobial resistance of bacteria in children with acute otitis media and ear discharge: A systematic review. Pediatr. Infect. Dis. J. 40, 756. doi: 10.1097/INF.0000000000003134 PubMed DOI PMC

Izawa K., Kubosaki A., Kobayashi N., Akiyama Y., Yamazaki A., Hashimoto K., et al. . (2020). Comprehensive fungal community analysis of house dust using next-generation sequencing. Int. J. Environ. Res. Public. Health 17, 5842. doi: 10.3390/ijerph17165842 PubMed DOI PMC

Khalaf N. F., Al-Obaidi M. J., Mohammed S. W., Al-Malkey M. K., Nayyef H. J., Al-Hur F. J. A., et al. . (2022). Indoor house dust-borne fungi and risk of allergic respiratory diseases in Baghdad city. Rev. Fr. Allergol 62, 401–406. doi: 10.1016/j.reval.2021.05.002 DOI

Kim D.-W., Cha C.-J. (2021). Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 53, 301–309. doi: 10.1038/s12276-021-00569-z PubMed DOI PMC

Klümper U., Gionchetta G., Catão E., Bellanger X., Dielacher I., Elena A. X., et al. . (2024). Environmental microbiome diversity and stability is a barrier to antimicrobial resistance gene accumulation. Commun. Biol. 7, 1–13. doi: 10.1038/s42003-024-06338-8 PubMed DOI PMC

Konecna E., Videnska P., Buresova L., Urik M., Smetanova S., Smatana S., et al. . (2023). Enrichment of human nasopharyngeal bacteriome with bacteria from dust after short-term exposure to indoor environment: a pilot study. BMC Microbiol. 23, 1–16. doi: 10.1186/s12866-023-02951-5 PubMed DOI PMC

Krakau S., Straub D., Gourlé H., Gabernet G., Nahnsen S. (2022). nf-core/mag: a best-practice pipeline for metagenome hybrid assembly and binning. NAR Genomics Bioinforma 4, lqac007. doi: 10.1093/nargab/lqac007 PubMed DOI PMC

Kunhikannan S., Thomas C. J., Franks A. E., Mahadevaiah S., Kumar S., Petrovski S. (2021). Environmental hotspots for antibiotic resistance genes. MicrobiologyOpen 10, e1197. doi: 10.1002/mbo3.1197 PubMed DOI PMC

La Fauci V., Costa G. B., Genovese C., Palamara M. A. R., Alessi V., Squeri R. (2019). Drug-resistant bacteria on hands of healthcare workers and in the patient area: an environmental survey in Southern Italy’s hospital. Rev. Espanola Quimioter 32, 303–310. PubMed PMC

Li H., Zhou S.-Y.-D., Neilson R., An X.-L., Su J.-Q. (2022). Skin microbiota interact with microbes on office surfaces. Environ. Int. 168, 107493. doi: 10.1016/j.envint.2022.107493 PubMed DOI

Li X., Wu Z., Dang C., Zhang M., Zhao B., Cheng Z., et al. . (2021). A metagenomic-based method to study hospital air dust resistome. Chem. Eng. J. 406, 126854. doi: 10.1016/j.cej.2020.126854 PubMed DOI PMC

Martínez-Martínez L., Pascual A., Jacoby G. A. (1998). Quinolone resistance from a transferable plasmid. Lancet Lond. Engl. 351, 797–799. doi: 10.1016/S0140-6736(97)07322-4 PubMed DOI

Mencía-Ares O., Cabrera-Rubio R., Cobo-Díaz J. F., Álvarez-Ordóñez A., Gómez-García M., Puente H., et al. . (2020). Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. Microbiome 8, 1–17. doi: 10.1186/s40168-020-00941-7 PubMed DOI PMC

Murray C. J. L., Ikuta K. S., Sharara F., Swetschinski L., Aguilar G. R., Gray A., et al. . (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655. doi: 10.1016/S0140-6736(21)02724-0 PubMed DOI PMC

Nakazawa M. (2024). fmsb: Functions for Medical Statistics Book with some Demographic Data. Available online at: https://cran.r-project.org/web/packages/fmsb/index.html (Accessed June 29, 2024).

Nastasi N., Haines S. R., Bope A., Meyer M. E., Horack J. M., Dannemiller K. C. (2024). Fungal diversity differences in the indoor dust microbiome from built environments on earth and in space. Sci. Rep. 14, 11858. doi: 10.1038/s41598-024-62191-z PubMed DOI PMC

Nielsen K. L., Olsen M. H., Pallejá A., Ebdrup S. R., Sørensen N., Lukjancenko O., et al. . (2021). Microbiome compositions and resistome levels after antibiotic treatment of critically ill patients: an observational cohort study. Microorganisms 9, 2542. doi: 10.3390/microorganisms9122542 PubMed DOI PMC

Oldenburg C. E., Hinterwirth A., Sié A., Coulibaly B., Ouermi L., Dah C., et al. . (2020). Gut resistome after oral antibiotics in preschool children in Burkina Faso: A randomized, controlled trial. Clin. Infect. Dis. 70, 525–527. doi: 10.1093/cid/ciz455 PubMed DOI PMC

Pal C., Bengtsson-Palme J., Kristiansson E., Larsson D. G. J. (2016). The structure and diversity of human, animal and environmental resistomes. Microbiome 4, 1–15. doi: 10.1186/s40168-016-0199-5 PubMed DOI PMC

Palleja A., Mikkelsen K. H., Forslund S. K., Kashani A., Allin K. H., Nielsen T., et al. . (2018). Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265. doi: 10.1038/s41564-018-0257-9 PubMed DOI

Peterson E., Kaur P. (2018). Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.02928 PubMed DOI PMC

Potrykus J., Wegrzyn G. (2001). Chloramphenicol-sensitive Escherichia coli strain expressing the chloramphenicol acetyltransferase (cat) gene. Antimicrob. Agents Chemother. 45, 3610–3612. doi: 10.1128/AAC.45.12.3610-3612.2001 PubMed DOI PMC

Puangseree J., Prathan R., Srisanga S., Chuanchuen R. (2024). Molecular basis of the persistence of chloramphenicol resistance among Escherichia coli and Salmonella spp. from pigs, pork and humans in Thailand. PloS One 19, e0304250. doi: 10.1371/journal.pone.0304250 PubMed DOI PMC

R Core Team (2021). R: A language and environment for statistical computing (Vienna, Austria: Foundation for Statistical Computing; ). Available at: https://www.R-project.org/.

Saeli N., Jafari-Ramedani S., Ramazanzadeh R., Nazari M., Sahebkar A., Khademi F. (2024). Prevalence and mechanisms of aminoglycoside resistance among drug-resistant Pseudomonas aeruginosa clinical isolates in Iran. BMC Infect. Dis. 24, 1–9. doi: 10.1186/s12879-024-09585-6 PubMed DOI PMC

Samarra A., Cabrera-Rubio R., Martínez-Costa C., Collado M. C. (2024). Unravelling the evolutionary dynamics of antibiotic resistance genes in the infant gut microbiota during the first four months of life. Ann. Clin. Microbiol. Antimicrob. 23, 72. doi: 10.1186/s12941-024-00725-z PubMed DOI PMC

Schwendener S., Donà V., Perreten V. (2020). The Novel Macrolide Resistance Genes mef(D), msr(F), and msr(H) Are Present on Resistance Islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus. Antimicrob. Agents Chemother. 64, e00160–e00120. doi: 10.1128/AAC.00160-20 PubMed DOI PMC

Shan Y., Wu W., Fan W., Haahtela T., Zhang G. (2019). House dust microbiome and human health risks. Int. Microbiol. 22, 297–304. doi: 10.1007/s10123-019-00057-5 PubMed DOI

Silva A., Silva V., López M., Rojo-Bezares B., Carvalho J. A., Castro A. P., et al. . (2023). Antimicrobial resistance, genetic lineages, and biofilm formation in pseudomonas aeruginosa isolated from human infections: an emerging one health concern. Antibiotics 12, 1248. doi: 10.3390/antibiotics12081248 PubMed DOI PMC

Smith B. L., Fernando S., King M. D. (2024). Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: a molecular dynamics study. Sci. Rep. 14, 2742. doi: 10.1038/s41598-024-52536-z PubMed DOI PMC

Stedtfeld R. D., Guo X., Stedtfeld T. M., Sheng H., Williams M. R., Hauschild K., et al. . (2018). Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 94, fiy130. doi: 10.1093/femsec/fiy130 PubMed DOI PMC

Stege P. B., Hordijk J., Shetty S. A., Visser M., Viveen M. C., Rogers M. R. C., et al. . (2022). Impact of long-term dietary habits on the human gut resistome in the Dutch population. Sci. Rep. 12, 1892. doi: 10.1038/s41598-022-05817-4 PubMed DOI PMC

Sukumar S., Wang F., Simpson C. A., Willet C. E., Chew T., Hughes T. E., et al. . (2023). Development of the oral resistome during the first decade of life. Nat. Commun. 14, 1291. doi: 10.1038/s41467-023-36781-w PubMed DOI PMC

Sun J., Liao X.-P., D’Souza A. W., Boolchandani M., Li S.-H., Cheng K., et al. . (2020. a). Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat. Commun. 11, 1427. doi: 10.1038/s41467-020-15222-y PubMed DOI PMC

Sun Y., Fu X., Li Y., Yuan Q., Ou Z., Lindgren T., et al. . (2020. b). Shotgun metagenomics of dust microbiome from flight deck and cabin in civil aviation aircraft. Indoor Air 30, 1199–1212. doi: 10.1111/ina.12707 PubMed DOI

Sunenshine R. H., Wright M.-O., Maragakis L. L., Harris A. D., Song X., Hebden J., et al. . (2007). Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 13, 97–103. doi: 10.3201/eid1301.060716 PubMed DOI PMC

Tavella T., Turroni S., Brigidi P., Candela M., Rampelli S. (2021). The human gut resistome up to extreme longevity. mSphere 6, e0069121. doi: 10.1128/mSphere.00691-21 PubMed DOI PMC

van Schaik W. (2015). The human gut resistome. Philos. Trans. R. Soc B Biol. Sci. 370, 20140087. doi: 10.1098/rstb.2014.0087 PubMed DOI PMC

Wang B., Xu J., Wang Y., Stirling E., Zhao K., Lu C., et al. . (2023). Tackling soil ARG-carrying pathogens with global-scale metagenomics. Adv. Sci. Weinh 10, e2301980. doi: 10.1002/advs.202301980 PubMed DOI PMC

Wang Y., Hu Y., Liu F., Cao J., Lv N., Zhu B., et al. . (2020). Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ. Int. 138, 105649. doi: 10.1016/j.envint.2020.105649 PubMed DOI

Wang Y., Lyu N., Liu F., Liu W. J., Bi Y., Zhang Z., et al. . (2021). More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environ. Int. 153, 106534. doi: 10.1016/j.envint.2021.106534 PubMed DOI

Weikl F., Tischer C., Probst A. J., Heinrich J., Markevych I., Jochner S., et al. . (2016). Fungal and bacterial communities in indoor dust follow different environmental determinants. PloS One 11, e0154131. doi: 10.1371/journal.pone.0154131 PubMed DOI PMC

Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis (New York: Springer-Verlag; ). doi: 10.1007/978-3-319-24277-4 DOI

Willmann M., Vehreschild M. J. G. T., Biehl L. M., Vogel W., Dörfel D., Hamprecht A., et al. . (2019). Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. BMC Biol. Lond. 17 (1), 76. doi: 10.1186/s12915-019-0692-y PubMed DOI PMC

Wood D. E., Lu J., Langmead B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 1–13. doi: 10.1186/s13059-019-1891-0 PubMed DOI PMC

Wu D., Jin L., Xie J., Liu H., Zhao J., Ye D., et al. . (2022). Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks. Microbiome 10, 1–16. doi: 10.1186/s40168-021-01197-5 PubMed DOI PMC

Wüthrich D., Brilhante M., Hausherr A., Becker J., Meylan M., Perreten V. (2019). A Novel Trimethoprim Resistance Gene, dfrA36, Characterized from Escherichia coli from Calves. mSphere 4, e00255–e00219. doi: 10.1128/mSphere.00255-19 PubMed DOI PMC

Yates J. A. F., Frangenberg J., Ibrahim A., Perelo L., bot nf-core, Beber M.E., et al. . (2023). nf-core/funcscan: 1.1.4 - British Beans on Toast (Patch) - 2023-11-07. doi: 10.5281/zenodo.10078888 DOI

Zhang Y., Zhang N., Wang M., Luo M., Peng Y., Li Z., et al. . (2023). The prevalence and distribution of aminoglycoside resistance genes. Biosaf. Health 5, 14–20. doi: 10.1016/j.bsheal.2023.01.001 DOI

Zhao Y., Wang Q., Chen Z., Mao D., Luo Y. (2021). Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor. Environ. pollut. 268, 115620. doi: 10.1016/j.envpol.2020.115620 PubMed DOI

Zhou Z.-C., Liu Y., Lin Z.-J., Shuai X.-Y., Zhu L., Xu L., et al. . (2021). Spread of antibiotic resistance genes and microbiota in airborne particulate matter, dust, and human airways in the urban hospital. Environ. Int. 153, 106501. doi: 10.1016/j.envint.2021.106501 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...