Decay experiments and microbial community analysis of water lily leaf biofilms: Sediment effects on leaf preservation potential
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39693331
PubMed Central
PMC11654923
DOI
10.1371/journal.pone.0315656
PII: PONE-D-24-26718
Knihovny.cz E-zdroje
- MeSH
- Bacteria * genetika MeSH
- biofilmy * růst a vývoj MeSH
- geologické sedimenty * mikrobiologie MeSH
- houby fyziologie MeSH
- listy rostlin * mikrobiologie MeSH
- mikrobiota MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Understanding the intricate dynamics of sediment-mediated microbial interactions and their impact on plant tissue preservation is crucial for unraveling the complexities of leaf decay and preservation processes. To elucidate the earliest stages of leaf preservation, a series of decay experiments was carried out for three months on Nymphaea water lily leaves in aquariums with pond water and one of three distinctly different, sterilized, fine-grained substrates-commercially purchased kaolinite clay or fine sand, or natural pond mud. One aquarium contained only pond water as a control. We use 16S and ITS rRNA gene amplicon sequencing to identify and characterize the complex composition of the bacterial and fungal communities on leaves. Our results reveal that the pond mud substrate produces a unique community composition in the biofilms compared to other substrates. The mud substrate significantly influences microbial communities, as shown by the correlation between high concentrations of minerals in the water and bacterial abundance. Furthermore, more biofilm formers are observed on the leaves exposed to mud after two months, contrasting with declines on other substrates. The mud substrate also enhanced leaf tissue preservation compared to the other sediment types, providing insight into the role of sediment and biofilms in fossilization processes. Notably, leaves on kaolinite clay have the fewest biofilm formers by the end of the experiment. We also identify key biofilm-forming microbes associated with each substrate. The organic-rich mud substrate emerges as a hotspot for biofilm formers, showing that it promotes biofilm formation on leaves and may increase the preservation potential of leaves better than other substrates. The mud's chemical composition, rich in minerals such as silica, iron, aluminum, and phosphate, may slow or suspend decay and facilitate biomineralization, thus paving the way toward leaf preservation. Our study bridges the information gap between biofilms observed on modern leaves and the mineral encrustation on fossil leaves by analyzing the microbial response in biofilms to substrate types in which fossil leaves are commonly found.
Bonn Organismic Institute of Biology Division of Palaeontology University of Bonn Bonn Germany
Institute for Hygiene and Public Health University Hospital Bonn Bonn Germany
Institute of Botany Czech Academy of Sciences Staré Město Czech Republic
Institute of Medical Microbiology Immunology and Parasitology University Hospital Bonn Bonn Germany
Zobrazit více v PubMed
Kidwell SM, Flessa KW. The quality of the fossil record: Populations, species, and communities. Annual Review of Ecology and Systematics. 1995;26: 269–299. doi: 10.1146/annurev.es.26.110195.001413 DOI
Peppe DJ, Baumgartner A, Flynn A, Blonder B. Reconstructing paleoclimate and paleoecology using fossil leaves. In: Croft D, Su D, Simpson S, editors. Methods in Paleoecology Vertebrate Paleobiology and Paleoanthropology. Springer; 2018. Available: 10.1007/978-3-319-94265-0_13 DOI
Naimark E, Kalinina M, Shokurov A, Boeva N, Markov A, Zaytseva L. Decaying in different clays: Implications for soft-tissue preservation. Palaeontology. 2016;59: 583–595. doi: 10.1111/pala.12246 DOI
McNamara ME, Orr PJ, Kearns SL, Alcalá L, Andanón P, Peñalver Mollá E. Soft-tissue preservation in Miocene frogs from Libros, Spain: Insights into the genesis of decay microenvironments. PALAIOS. 2009;24: 104–117. doi: 10.2110/palo.2008.p08-017r DOI
Martin D, Briggs DEG, Parkes RJ. Experimental mineralization of invertebrate eggs and the preservation of Neoproterozoic embryos. Geology. 2003;31: 39–42. doi: 10.1130/0091-7613 DOI
Locatelli ER, Briggs DEG, Leslie A, Munzinger J, Grandcolas P, Lowry PP, et al.. Leaves in iron oxide: Remarkable preservation of a Neogene flora from New Caledonia. PALAIOS. 2022;37: 622–632. doi: 10.2110/palo.2022.019 DOI
Wilby PR, Briggs DEG, Bernier P, Gaillard C. Role of microbial mats in the fossilization of soft tissues. Geology. 1996;24: 787–790. doi: 10.1130/0091-7613 DOI
Wilby PR, Briggs DEG. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios. 1997;30: 493–502. doi: 10.1016/S0016-6995(97)80056-3 DOI
Varejäo FG, Warren LV, Simöse MG, Fürsich FT, Matos SA, Assine ML. Exceptional preservation of soft tissues by microbial entombment: Insights into the taphonomy of the Crato Konservat-Lagerstätte. PALAIOS. 2019;34: 331–348. doi: 10.2110/palo.2019.041 DOI
Spicer RA. The sorting of plant remains in a recent depositional environment. Ph.D. dissertation, Imperial College. 1975.
Spicer RA. The Pre-depositional formation of some leaf impressions. Paleontology. 1977;20: 907–912.
Spicer RA. Plant taphonomic processes. In: Allison PA, Briggs DEG, editors. Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press; New York; 1991. pp. 71–113.
Dunn K, McLean R, Upchurch G Jr, Folk R. Enhancement of leaf fossilization potential by bacterial biofilms. Geology. 1997;25: 1119–1122. 10.1130/0091-7613 DOI
O’Brien NR, Meyer HW, Harding IC. The role of biofilms in fossil preservation, Florissant Formation, Colorado. In: Meyer HW, Smith DM, editors. Paleontology of the Upper Eocene Florissant Formation, Colorado. 2008. pp. 19–31.
Locatelli ER, McMahon S, Bilger H. Biofilms mediate the preservation of leaf adpression fossils by clays. PALAIOS. 2017;32: 708–724. doi: 10.2110/palo.2017.043 DOI
Iniesto M, Blanco-Moreno C, Villalba A, Buscalioni ÁD, Guerrero MC, López-Archilla AI. Plant Tissue Decay in Long-Term Experiments with Microbial Mats. Geosciences. 2018;8: 387. doi: 10.3390/geosciences8110387 DOI
Janssen K, Low SL, Wang Y, Mu Q-Y, Bierbaum G, Gee CT. Elucidating biofilm diversity on water lily leaves through 16S rRNA amplicon analysis: Comparison of four DNA extraction kits. Applications in Plant Sciences. 2021;9: e11444. doi: 10.1002/aps3.11444 PubMed DOI PMC
Karačić S, Palmer B, Gee CT, Bierbaum G. Oxygen-dependent biofilm dynamics in leaf decay: An in vitro analysis. Scientific Reports. 2024;14: 6728. doi: 10.1038/s41598-024-57223-7 PubMed DOI PMC
Palmer B, Karačić S, Bierbaum G, Gee CT. Microbial methods matter: Identifying discrepancies between microbiome denoising pipelines using a leaf biofilm taphonomic dataset. Applications in Plant Sciences. 2024.
Liu AG, McMahon S, Matthews JJ, Still JW, Brasier AT. Petrological evidence supports the death mask model for the preservation of Ediacaran soft-bodied organisms in South Australia. Geology. 2019;47: 215–218. doi: 10.1130/G45918.1 DOI
Osés GL, Petri S, Voltani CG, Prado GMEM, Galante D, Rizzutto MA, et al.. Deciphering pyritization-kerogenization gradient for fish soft-tissue preservation. Scientific Reports. 2017;7: 1468. doi: 10.1038/s41598-017-01563-0 PubMed DOI PMC
Varejão FG, Warren LV, Rodrigues MG, Assine ML, Simões MG. Origin and significance of macroscopic organic aggregates from the lacustrine Aptian Crato Konservat-Lagerstätte. Sedimentary Geology. 2024;470: 106692. doi: 10.1016/j.sedgeo.2024.106692 DOI
Donlan RM. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases. 2002;8: 881. doi: 10.3201/eid0809.020063 PubMed DOI PMC
Besemer K. Biodiversity, community structure and function of biofilms in stream ecosystems. Research in Microbiology. 2015;166: 774–781. doi: 10.1016/j.resmic.2015.05.006 PubMed DOI PMC
Monier J-M, Lindow S. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Applied and Environmental Microbiology. 2004;70: 346–355. doi: 10.1128/AEM.70.1.346-355.2004 PubMed DOI PMC
Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized microniche. Journal of Bacteriology. 1994;176: 2137–2142. doi: 10.1128/jb.176.8.2137-2142.1994 PubMed DOI PMC
Oppenheimer-Shaanan Y, Sibony-Nevo O, Bloom-Ackermann Z, Suissa R, Steinberg N, Kartvelishvily E, et al.. Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms and Microbiomes. 2016;2: 1–10. doi: 10.1038/npjbiofilms.2015.31 PubMed DOI PMC
Dade‐Robertson M, Keren‐Paz A, Zhang M, Kolodkin‐Gal I. Architects of nature: growing buildings with bacterial biofilms. Microbial Biotechnology. 2017;10: 1157–1163. doi: 10.1111/1751-7915.12833 PubMed DOI PMC
Brown DA, Kamineni DC, Sawicki JA, Beveridge TJ. Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory. Applied and Environmental Microbiology. 1994;60: 3182–3191. doi: 10.1128/aem.60.9.3182-3191.1994 PubMed DOI PMC
Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Férard C. Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geoscience. 2011;343: 160–167. doi: 10.1016/j.crte.2010.09.002 DOI
Briggs DEG, Kear AJ. Decay and mineralization of shrimps. PALAIOS. 1994;9: 431–456. doi: 10.2307/3515135 DOI
Li J, Benzerara K, Bernard S, Beyssac O. The link between biomineralization and fossilization of bacteria: Insights from field and experimental studies. Chemical Geology. 2013;359: 49–69. doi: 10.1016/j.chemgeo.2013.09.013 DOI
Laflamme M, Schiffbauer JD, Narbonne GM, Briggs DEG. Microbial biofilms and the preservation of the Ediacara biota. LET. 2011;44: 203–213. doi: 10.1111/j.1502-3931.2010.00235.x DOI
Friis EM, Pedersen KR, Crane PR. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature. 2001;410: 357–360. doi: 10.1038/35066557 PubMed DOI
Taylor DW, Gee CT. Phylogenetic analysis of fossil water lilies based on leaf architecture and vegetative characters: Testing phylogenetic hypotheses from molecular studies. Bulletin of the Peabody Museum of Natural History. 2014;55: 89–110. doi: 10.3374/014.055.0208 DOI
Taylor EL, Taylor TN, Krings M. Paleobotany: The Biology and Evolution of Fossil Plants. Academic Press; 2009.
Gee CT, Mörs T. Aquatic macrophytes from the Upper Oligocene fossillagerstätte of Rott (Rhineland, Germany) Part I: Seeds. Palaeontographica Abteilung B. 2001; 33–45. doi: 10.1127/palb/259/2001/33 DOI
Gee CT, Taylor DW, Rember WC. First water lily, a leaf of Nymphaea sp., from the Miocene Clarkia flora, northern Idaho, USA: Occurrence, taphonomic observations, floristic implications. Fossil Imprint. 2022;78: 288–297. doi: 10.37520/fi.2022.011 DOI
Wang H, Leng Q, Liu W, Yang H. A rapid lake-shallowing event terminated preservation of the Miocene Clarkia Fossil Konservat-Lagerstätte (Idaho, USA). Geology. 2017;45: 239–242. doi: 10.1130/G38434.1 DOI
Klok PF, Velde G van der. Initial decomposition of floating leaf blades of waterlilies: causes, damage types and impacts. PeerJ. 2019;7: e7158. doi: 10.7717/peerj.7158 PubMed DOI PMC
Coiffard C, Mohr BAR, Bernardes-de-Oliveira MEC. Jaguariba wiersemana gen. nov. et sp. nov., an Early Cretaceous member of crown group Nymphaeales (Nymphaeaceae) from northern Gondwana. TAXON. 2013;62: 141–151. doi: 10.1002/tax.621012 DOI
Ribeiro AC, Ribeiro GC, Varejão FG, Battirola LD, Pessoa EM, Simões MG, et al.. Towards an actualistic view of the Crato Konservat-Lagerstätte paleoenvironment: A new hypothesis as an Early Cretaceous (Aptian) equatorial and semi-arid wetland. Earth-Science Reviews. 2021;216: 103573. doi: 10.1016/j.earscirev.2021.103573 DOI
Taylor DW. Phylogenetic analysis of Cabombaceae and Nymphaeaceae based on vegetative and leaf architectural characters. Taxon. 2008;57: 1082–1095. doi: 10.1002/tax.574005 DOI
Wang H, Dilcher DL. Early Cretaceous angiosperm leaves from the Dakota Formation, Hoisington III locality, Kansas, USA. Palaeontologia Electronica. 2018;21: 1–49. doi: 10.26879/841 DOI
Wang H, Dilcher DL. Aquatic Angiosperms from the Dakota Formation (Albian, Lower Cretaceous), Hoisington III Locality, Kansas, USA. International Journal of Plant Sciences. 2006;167: 385–401. doi: 10.1086/499502 DOI
Dobruskina IA. Turonian plants from the southern Negev, Israel. Cretaceous Research. 1997;18: 87–107. doi: 10.1006/cres.1996.0051 DOI
Fiorillo AR, McCarthy PJ, Kobayashi Y, Tomsich CS, Tykoski RS, Lee Y-N, et al.. An unusual association of hadrosaur and therizinosaur tracks within Late Cretaceous rocks of Denali National Park, Alaska. Scientific Reports. 2018;8: 1–12. doi: 10.1038/s41598-018-30110-8 PubMed DOI PMC
Vera EI, Perez Loinaze VS, Moyano-Paz D, Coronel MD, Manabe M, Tsuihiji T, et al.. Paleobotany of the uppermost Cretaceous Chorrillo Formation, Santa Cruz Province, Argentina: Insights in a freshwater floral community. Cretaceous Research. 2022;138: 105296. doi: 10.1016/j.cretres.2022.105296 DOI
Smith K, Lehmann T, Mayr G, Micklich N, Rabenstein R, Wedmann S. The Messel ecosystem. In: Smith K, Schaal S, Habersetzer J, editors. Messel: An Ancient Greenhouse Ecosystem. Stuggart, Germany: Schweizerbart; 2018. pp. 302–313.
Gee CT, Taylor DW. An extinct transitional leaf genus of Nymphaeaceae from the Eocene lake at Messel, Germany: Nuphaea engelhardtii Gee et David W. Taylor gen. et sp. nov. International Journal of Plant Sciences. 2019;180: 724–736. doi: doi.org/10.1086/704376
Gee CT, Taylor DW. Aquatic macrophytes from the upper Oligocene fossillagerstätte of Rott (Rhineland, Germany). Part II: A new fossil leaf species of Nymphaea (subgenus Lotos), N. elisabethae Gee et David W. Taylor sp. nov. Palaeontographica Abteilung B. 2016; 33–43. doi: 10.1127/palb/295/2016/33 DOI
Wessel P, Weber CO. Neuer Beitrag zur Tertiärflora der niederrheinischen Braunkohlenformation. Palaeontographica. 1855; 111–168.
Rember WC. Stratigraphy and paleobotany of Miocene lake sediments near Clarkia, Idaho. Ph.D. dissertation, University of Idaho. 1991.
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al.. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences. 2011;108: 4516–4522. doi: 10.1073/pnas.1000080107 PubMed DOI PMC
Korabecná M, Liska V, Fajfrlík K. Primers ITS1, ITS2 and ITS4 detect the intraspecies variability in the internal transcribed spacers and 5.8S rRNA gene region in clinical isolates of fungi. Folia Microbiol (Praha). 2003;48: 233–238. doi: 10.1007/BF02930961 PubMed DOI
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology. 2019;37: 852–857. doi: 10.1038/s41587-019-0209-9 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High resolution sample inference from Illumina amplicon data. Nature methods. 2016;13: 581–583. doi: 10.1038/nmeth.3869 PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al.. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 2013;41: D590–D596. doi: 10.1093/nar/gks1219 PubMed DOI PMC
Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al.. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research. 2019;47: D259–D264. doi: 10.1093/nar/gky1022 PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022. Available: https://www.R-project.org/
McDonald D, Jiang Y, Balaban M, Cantrell K, Zhu Q, Gonzalez A, et al.. Greengenes2 enables a shared data universe for microbiome studies. BioRxiv. 2022; 2022.12.19.520774. doi: 10.1101/2022.12.19.520774 DOI
Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, et al.. BugBase predicts organism-level microbiome phenotypes. BioRxiv. 2017; 133462. doi: 10.1101/133462 DOI
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al.. vegan: Community Ecology Package. 2022. Available: https://CRAN.R-project.org/package=vegan
Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. 2018; 299537. doi: doi.org/10.1101/299537
Yan L, Yan ML. Package ‘ggvenn.’ 2021.
Liu C, Cui Y, Li X, Yao M. microeco: An R package for data mining in microbial community ecology. FEMS Microbiology Ecology. 2021;97: fiaa255. doi: 10.1093/femsec/fiaa255 PubMed DOI
Wilson LA, Butterfield NJ. Sediment effects on the preservation of Burgess Shale-type compression fossils. PALAIOS. 2014;29: 145–154. doi: 10.2110/palo.2013.075 DOI
Corthésy N, Saleh F, Thomas C, Antcliffe JB, Daley AC. The effects of clays on bacterial community composition during arthropod decay. Swiss Journal of Palaeontology. 2024;143: 26. doi: 10.1186/s13358-024-00324-7 PubMed DOI PMC
McMahon S, Anderson RP, Saupe EE, Briggs DEG. Experimental evidence that clay inhibits bacterial decomposers: Implications for preservation of organic fossils. Geology. 2016;44: 867–870. doi: 10.1130/G38454.1 DOI
Newman SA, Daye M, Fakra SC, Marcus MA, Pajusalu M, Pruss SB, et al.. Experimental preservation of muscle tissue in quartz sand and kaolinite. PALAIOS. 2019;34: 437–451. doi: 10.2110/palo.2019.030 DOI
Höfte M, De Vos P. Plant pathogenic Pseudomonas species. In: Gnanamanickam SS, editor. Plant-Associated Bacteria. Dordrecht: Springer Netherlands; 2006. pp. 507–533. doi: 10.1007/978-1-4020-4538-7_14 DOI
Raff EC, Schollaert KL, Nelson DE, Donoghue PCJ, Thomas C-W, Turner FR, et al.. Embryo fossilization is a biological process mediated by microbial biofilms. Proceedings of the National Academy of Sciences. 2008;105: 19360–19365. doi: 10.1073/pnas.0810106105 PubMed DOI PMC
Raff EC, Andrews ME, Turner FR, Toh E, Nelson DE, Raff RA. Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evolution & Development. 2013;15: 243–256. doi: 10.1111/ede.12028 PubMed DOI
Benedek T, Szentgyörgyi F, Szabó I, Kriszt B, Révész F, Radó J, et al.. Aerobic and oxygen-limited enrichment of BTEX-degrading biofilm bacteria: dominance of Malikia versus Acidovorax species. Environmental Science and Pollution Research. 2018;25: 32178–32195. doi: 10.1007/s11356-018-3096-6 PubMed DOI
Caldwell ME, Allen TD, Lawson PA, Tanner RS. Tolumonas osonensis sp. nov., isolated from anoxic freshwater sediment, and emended description of the genus Tolumonas. International Journal of Systematic and Evolutionary Microbiology. 2011;61: 2659–2663. doi: 10.1099/ijs.0.023853–0 PubMed DOI
Fischer-Romero C, Tindall BJ. Incertae Sedis Tolumonas. Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd; 2015. pp. 1–4. doi: 10.1002/9781118960608.gbm01083 DOI
Hwang WM, Kim SM, Kang K, Ahn T-Y. Uliginosibacterium sediminicola sp. nov., isolated from freshwater sediment. International Journal of Systematic and Evolutionary Microbiology. 2018;68: 924–929. doi: 10.1099/ijsem.0.002611 PubMed DOI
Han J-H, Baek K, Ahn Y-H, Lee WJ, Lee M-H. Uliginosibacterium sangjuense sp. nov., isolated from sediment of the Nakdong River. Antonie van Leeuwenhoek. 2018;111: 259–264. doi: 10.1007/s10482-017-0946-z PubMed DOI
Kang JY, Chun J, Jahng KY. Uliginosibacterium flavum sp. nov. isolated from an artificial lake. J Microbiol. 2017;55: 595–599. doi: 10.1007/s12275-017-7002-6 PubMed DOI
Song J, Kim M, Park MS, Joung Y, Kang I, Cho J-C. Uliginosibacterium aquaticum sp. nov., Isolated from a Freshwater Lake. Curr Microbiol. 2021;78: 3381–3387. doi: 10.1007/s00284-021-02605-7 PubMed DOI
Álvarez B, Biosca EG, López MM. On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. In: Mendez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Bada-joz Spain; 2010. pp. 267–279.
Huet G. Breeding for resistances to Ralstonia solanacearum. Frontiers in Plant Science. 2014;5. Available: https://www.frontiersin.org/articles/10.3389/fpls.2014.00715 PubMed DOI PMC
Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL Jr. Malassezia ecology, pathophysiology, and treatment. Medical Mycology. 2018;56: S10–S25. doi: 10.1093/mmy/myx134 PubMed DOI
Manimala MRA, Murugesan R. In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. isolated from natural source. Journal of Applied and Natural Science. 2014;6: 649–653. doi: 10.31018/jans.v6i2.511 DOI
Last FT. Seasonal incidence of Sporobolomyces on cereal leaves. Transactions of the British Mycological Society. 1955;38: 221–239. doi: 10.1016/S0007-1536(55)80069-1 DOI
Liesack W, Bak F, Kreft J-U, Stackebrandt E. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Archives of Microbiology. 1994;162: 85–90. doi: 10.1007/BF00264378 PubMed DOI
Harb M, Xiong Y, Guest J, Amy G, Hong P-Y. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater. Environmental Science: Water Research & Technology. 2015;1: 800–813. doi: 10.1039/C5EW00162E DOI
Thrash JC, Coates JD. Holophaga. Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd; 2015. pp. 1–2. doi: 10.1002/9781118960608.gbm00006 DOI
Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. International Journal of Systematic and Evolutionary Microbiology. 2001;51: 527–533. doi: 10.1099/00207713-51-2-527 PubMed DOI
Cassán F, Coniglio A, López G, Molina R, Nievas S, de Carlan CLN, et al.. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils. 2020;56: 461–479. doi: 10.1007/s00374-020-01463-y DOI
Janssen K, Mähler B, Rust J, Bierbaum G, McCoy VE. The complex role of microbial metabolic activity in fossilization. Biological Reviews. 2022;97: 449–465. doi: 10.1111/brv.12806 PubMed DOI
Drumheller SK, Boyd CA, Barnes BMS, Householder ML. Biostratinomic alterations of an Edmontosaurus “mummy” reveal a pathway for soft tissue preservation without invoking “exceptional conditions.” PLOS ONE. 2022;17: e0275240. doi: 10.1371/journal.pone.0275240 PubMed DOI PMC
Zhou C, Vannela R, Hayes KF, Rittmann BE. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris. Journal of Hazardous Materials. 2014;272: 28–35. doi: 10.1016/j.jhazmat.2014.02.046 PubMed DOI
Matthies C, Evers S, Ludwig W, Schink B. Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. International Journal of Systematic and Evolutionary Microbiology. 2000;50: 1591–1594. doi: 10.1099/00207713-50-4-1591 PubMed DOI
Gentile V, Frangipani E, Bonchi C, Minandri F, Runci F, Visca P. Iron and Acinetobacter baumannii biofilm formation. Pathogens. 2014;3: 704–719. doi: 10.3390/pathogens3030704 PubMed DOI PMC
Su JF, Zheng SC, Huang TL, Ma F, Shao SC, Yang SF, et al.. Simultaneous removal of Mn(II) and nitrate by the manganese-oxidizing bacterium Acinetobacter sp. SZ28 in anaerobic conditions. Geomicrobiology Journal. 2016;33: 586–591. doi: 10.1080/01490451.2015.1063024 DOI
Santegoeds CM, Ferdelman TG, Muyzer G, De Beer D. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Applied and Environmental Microbiology. 1998;64: 3731–3739. doi: 10.1128/AEM.64.10.3731-3739.1998 PubMed DOI PMC
Okabe S. Ecophysiology of sulphate-reducing bacteria in environmental biofilms. In: Barton L, Hamilton W, editors. Sulphate-reducing Bacteria. Cambridge University Press; 2007. pp. 359–383.
Gorbunov MYu Khlopko YA, Kataev VYa Umanskaya MV. Bacterial diversity in attached communities of a cold high-sulfide water body in European Russia. Microbiology. 2022;91: 77–90. doi: 10.1134/S0026261722010040 DOI
Liew KJ, Liang CH, Lau YT, Yaakop AS, Chan K-G, Shahar S, et al.. Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures. Scientific Reports. 2022;12: 2850. doi: 10.1038/s41598-022-06943-9 PubMed DOI PMC
Mähler B, Janssen K, Tahoun M, Tomaschek F, Schellhorn R, Müller CE, et al.. Adipocere formation in biofilms as a first step in soft tissue preservation. Scientific Reports. 2022;12: 10122. doi: 10.1038/s41598-022-14119-8 PubMed DOI PMC
Locatelli ER. The exceptional preservation of plant fossils: A review of taphonomic pathways and biases in the fossil record. The Paleontological Society Papers. 2014;20: 237–258.
Lewan M. Laboratory classification of very fine grained sedimentary rocks. Geology. 1978;6: 745–748. doi: 10.1130/0091-7613 DOI