Cytochrome P450 phenotyping using the Geneva cocktail improves metabolic capacity prediction in a hospitalized patient population

. 2025 May ; 91 (5) : 1382-1395. [epub] 20241219

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39701086

Grantová podpora
FNS 310030_159669 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
FNS 320030_182361 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
University of Geneva

AIMS: Liver cytochromes (CYPs) play an important role in drug metabolism but display a large interindividual variability resulting both from genetic and environmental factors. Most drug dose adjustment guidelines are based on genetics performed in healthy volunteers. However, hospitalized patients are not only more likely to be the target of new prescriptions and drug treatment modifications than healthy volunteers, but will also be more subject to polypharmacy, drug-drug interactions, or to suffer from disease or inflammation affecting CYP activities. METHODS: We compared predicted phenotype based on genetic data and measured phenotype using the Geneva cocktail to determine the extent of drug metabolizing enzyme variability in a large population of hospitalized patients (>500) and healthy young volunteers (>300). We aimed to assess the correlation between predicted and measured phenotype in the two populations. RESULTS: We found that, even in cases where the genetically predicted metabolizer group correlates well with measured CYP activity at group level, this prediction lacks accuracy for the determination of individual metabolizer capacities. Drugs can have a profound impact on CYP activity, but even after combining genetic and drug treatment information, the activity of a significant proportion of extreme metabolizers could not be explained. CONCLUSIONS: Our results support the use of measured metabolic ratios in addition to genotyping for accurate determination of individual metabolic capacities to guide personalized drug prescription.

Zobrazit více v PubMed

Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103‐141.

Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS ONE. 2013;8(12):e82562.

Achour B, Barber J, Rostami‐Hodjegan A. Expression of hepatic drug‐metabolizing cytochrome p450 enzymes and their intercorrelations: a meta‐analysis. Drug Metab Dispos. 2014;42(8):1349‐1356.

Morgan ET, Dempsey JL, Mimche SM, et al. Physiological regulation of drug metabolism and transport: pregnancy, microbiome, inflammation, infection, and fasting. Drug Metab Dispos. 2018;46(5):503‐513.

Shah RR, Smith RL. Inflammation‐induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos. 2015;43(3):400‐410.

Relling MV, Klein TE. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther. 2011;89(3):464‐467.

Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17(3):165‐184.

Hicks JK, Bishop JR, Sangkuhl K, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127‐134.

Hicks JK, Sangkuhl K, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017;102(1):37‐44.

Karnes JH, Rettie AE, Somogyi AA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and HLA‐B genotypes and phenytoin dosing: 2020 update. Clin Pharmacol Ther. 2021;109(2):302‐309.

Moriyama B, Obeng AO, Barbarino J, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45‐51.

Desta Z, Gammal RS, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and efavirenz‐containing antiretroviral therapy. Clin Pharmacol Ther. 2019;106(4):726‐733.

Theken KN, Lee CR, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium guideline (CPIC) for CYP2C9 and nonsteroidal anti‐inflammatory drugs. Clin Pharmacol Ther. 2020;108(2):191‐200.

Birdwell KA, Decker B, Barbarino JM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19‐24.

Lesche D, Mostafa S, Everall I, Pantelis C, Bousman CA. Impact of CYP1A2, CYP2C19, and CYP2D6 genotype‐ and phenoconversion‐predicted enzyme activity on clozapine exposure and symptom severity. Pharmacogenomics J. 2020;20(2):192‐201.

Cicali EJ, Elchynski AL, Cook KJ, et al. How to integrate CYP2D6 phenoconversion into clinical pharmacogenetics: a tutorial. Clin Pharmacol Ther. 2021;110(3):677‐687.

Bousman CA, Wu P, Aitchison KJ, Cheng T. Sequence2Script: a web‐based tool for translation of pharmacogenetic data into evidence‐based prescribing recommendations. Front Pharmacol. 2021;12:636650.

Interactions médicamenteuses, cytochromes P450 et P‐glycoprotéine (Pgp). Hôpitaux Universitaires de Genève; 2017.

Flockhart, D., et al. The Flockhart cytochrome P450 drug–drug interaction table. 2021. https://drug-interaction.medicine.iu.edu/. Accessed September 2022.

Shah RR, Smith RL. Addressing phenoconversion: the Achilles' heel of personalized medicine. Br J Clin Pharmacol. 2015;79(2):222‐240.

Tanaka E, Kurata N, Yasuhara H. How useful is the "cocktail approach" for evaluating human hepatic drug metabolizing capacity using cytochrome P450 phenotyping probes in vivo? J Clin Pharm Ther. 2003;28(3):157‐165.

Karakunnel JJ, Bui N, Palaniappan L, et al. Reviewing the role of healthy volunteer studies in drug development. J Transl Med. 2018;16(1):336.

Rodieux F, Daali Y, Rollason V, Samer CF, Lorenzini KI. Practice of CYP450 genotyping and phenotyping in children in a real‐life setting. Front Pharmacol. 2023;14:1130100.

Gloor Y, Lloret‐Linares C, Bosilkovska M, et al. Drug metabolic enzyme genotype‐phenotype discrepancy: high phenoconversion rate in patients treated with antidepressants. Biomed Pharmacother. 2022;152:113202.

Ing Lorenzini K, Desmeules J, Rollason V, et al. CYP450 genotype‐phenotype concordance using the Geneva micrococktail in a clinical setting. Front Pharmacol. 2021;12:730637.

Mouterde M, Daali Y, Rollason V, et al. Joint analysis of phenotypic and genomic diversity sheds light on the evolution of xenobiotic metabolism in humans. Genome Biol Evol. 2022;14(12):evac167.

Rollason V, Mouterde M, Daali Y, et al. Safety of the Geneva cocktail, a cytochrome P450 and P‐glycoprotein phenotyping cocktail, in healthy volunteers from three different geographic origins. Drug Saf. 2020;43(11):1181‐1189.

Lenoir C, Terrier J, Gloor Y, et al. Impact of the genotype and phenotype of CYP3A and P‐gp on the apixaban and rivaroxaban exposure in a real‐world setting. J Pers Med. 2022;12(4).

Terrier J, Gaspar F, Gosselin P, et al. Apixaban and rivaroxaban's physiologically‐based pharmacokinetic model validation in hospitalized patients: a first step for larger use of a priori modeling approach at bed side. CPT Pharmacometrics Syst Pharmacol. 2023;12(12):1872‐1883.

Gaedigk A, Ingelman‐Sundberg M, Miller NA, et al. The Pharmacogene Variation (PharmVar) Consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin Pharmacol Ther. 2018;103(3):399‐401.

Gaedigk A, Sangkuhl K, Whirl‐Carrillo M, et al. The evolution of PharmVar. Clin Pharmacol Ther. 2019;105(1):29‐32.

Whirl‐Carrillo M, Huddart R, Gong L, et al. An evidence‐based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2021;110(3):563‐572.

Whirl‐Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414‐417.

Bosilkovska M, Samer CF, Déglon J, et al. Geneva cocktail for cytochrome p450 and P‐glycoprotein activity assessment using dried blood spots. Clin Pharmacol Ther. 2014;96(3):349‐359.

Bosilkovska M, Samer C, Déglon J, et al. Evaluation of mutual drug–drug interaction within Geneva cocktail for cytochrome P450 phenotyping using innovative dried blood sampling method. Basic Clin Pharmacol Toxicol. 2016;119(3):284‐290.

Barrangou‐Poueys‐Darlas M, Guerlais M, Laforgue E‐J, et al. CYP1A2 and tobacco interaction: a major pharmacokinetic challenge during smoking cessation. Drug Metab Rev. 2021;53(1):30‐44.

Hunt SE, McLaren W, Gil L, et al. Ensembl variation resources. Database (Oxford). 2018.

Alexander SPH, Fabbro D, Kelly E, et al. The concise guide to PHARMACOLOGY 2023/24: enzymes. Br J Pharmacol. 2023;180(Suppl 2):S289‐S373.

Darnaud L et al. Phenotyping indices of CYP450 and P‐glycoprotein in human volunteers and in patients treated with painkillers or psychotropic drugs. Pharmaceutics. 2023;15(3):979.

Fekete F, Mangó K, Déri M, Incze E, Minus A, Monostory K. Impact of genetic and non‐genetic factors on hepatic CYP2C9 expression and activity in Hungarian subjects. Sci Rep. 2021;11(1):17081.

Braten LS, Haslemo T, Jukic MM, et al. A novel CYP2C‐haplotype associated with ultrarapid metabolism of escitalopram. Clin Pharmacol Ther. 2021;110(3):786‐793.

Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668‐D672.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...