Giant anisotropic piezoresponse of layered ZrSe3
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39717884
PubMed Central
PMC11667461
DOI
10.1039/d4nh00539b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We investigated the effect of uniaxial strain on the electrical properties of few-layer ZrSe3 devices under compressive and tensile strains applied up to ±0.62% along different crystal directions. We observed that the piezoresponse, the change in resistance upon application of strain, of ZrSe3 strongly depends on both the direction in which electrical transport occurs and the direction in which uniaxial strain is applied. Notably, a remarkably high anisotropy in the gauge factor for a device with the transport occurring along the b-axis of ZrSe3 with GF = 68 when the strain is applied along the b-axis was obtained, and GF = 4 was achieved when strain is applied along the a-axis. This leads to an anisotropy ratio of almost 90%. Devices whose transport occurs along the a-axis, however, show much lower anisotropy in gauge factors when strain is applied along different directions, leading to an anisotropy ratio of 50%. Furthermore, ab initio calculations of strain dependent change in resistance showed the same trends of the anisotropy ratio as obtained from experimental results for both electrical transport and strain application directions, which were correlated with bandgap changes and different orbital contributions.
D Foundry Research Group Instituto de Ciencia de Materiales de Madrid 28049 Madrid Spain
Ikerbasque Basque Foundation for Science Plaza de Euskadi 5 E 48009 Bilbao Spain
Zobrazit více v PubMed
Novoselov K. S. Jiang D. Schedin F. Booth T. J. Khotkevich V. V. Morozov S. V. Geim A. K. Proc. Natl. Acad. Sci. U. S. A. 2005;102:10451–10453. doi: 10.1073/pnas.0502848102. PubMed DOI PMC
Zhao S. Dong B. Wang H. Wang H. Zhang Y. Han Z. V. Zhang H. Nanoscale Adv. 2020;2:109–139. doi: 10.1039/C9NA00623K. PubMed DOI PMC
Li L. Yu Y. Ye G. J. Ge Q. Ou X. Wu H. Feng D. Chen X. H. Zhang Y. Nat. Nanotechnol. 2014;95:372–377. doi: 10.1038/nnano.2014.35. PubMed DOI
Cao L. Chen Q. Zhu Y. Tong K. Li W. Ma J. Jalali M. Huang Z. Wu J. Zhai Y. ACS Appl. Mater. Interfaces. 2024;16(15):19764–19770. doi: 10.1021/acsami.4c00881. PubMed DOI
Chenet D. A. Aslan O. B. Huang P. Y. Fan C. Van Der Zande A. M. Heinz T. F. Hone J. C. Nano Lett. 2015;15:5667–5672. PubMed
Choi B. K. Ulstrup S. Gunasekera S. M. Kim J. Lim S. Y. Moreschini L. Oh J. S. Chun S. H. Jozwiak C. Bostwick A. Rotenberg E. Cheong H. Lyo I. W. Mucha-Kruczynski M. Chang Y. J. ACS Nano. 2020;14:7880–7891. doi: 10.1021/acsnano.0c01054. PubMed DOI
Abudukelimu A., Kakushima K., Ahmet P., Genic M., Tsutsui K., Nishiyama A., Sugii N., Natori K., Hattori T. and Iwai H., in ICSICT-2010-2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Proceedings, 2010, pp. 1247–1249.
Liu E. Fu Y. Wang Y. Feng Y. Liu H. Wan X. Zhou W. Wang B. Shao L. Ho C. H. Huang Y. S. Cao Z. Wang L. Li A. Zeng J. Song F. Wang X. Shi Y. Yuan H. Hwang H. Y. Cui Y. Miao F. Xing D. Nat. Commun. 2015;6:1–7. PubMed PMC
Zhou Z. Liu H. Fan D. Cao G. Sheng C. ACS Appl. Mater. Interfaces. 2018;10:37031–37037. doi: 10.1021/acsami.8b12843. PubMed DOI
Chen M. Li L. Xu M. Li W. Zheng L. Wang X. Research. 2023;6:0066. PubMed PMC
Yuan H. Liu X. Afshinmanesh F. Li W. Xu G. Sun J. Lian B. Curto A. G. Ye G. Hikita Y. Shen Z. Zhang S. C. Chen X. Brongersma M. Hwang H. Y. Cui Y. Nat. Nanotechnol. 2015;10:707–713. doi: 10.1038/nnano.2015.112. PubMed DOI
Zhang E. Wang P. Li Z. Wang H. Song C. Huang C. Chen Z. G. Yang L. Zhang K. Lu S. Wang W. Liu S. Fang H. Zhou X. Yan H. Zou J. Wan X. Zhou P. Hu W. Xiu F. ACS Nano. 2016;10:8067–8077. doi: 10.1021/acsnano.6b04165. PubMed DOI
Yang H. Jussila H. Autere A. Komsa H. P. Ye G. Chen X. Hasan T. Sun Z. ACS Photonics. 2017;4:3023–3030. doi: 10.1021/acsphotonics.7b00507. DOI
Li L. Han W. Pi L. Niu P. Han J. Wang C. Su B. Li H. Xiong J. Bando Y. Zhai T. InfoMat. 2019;1:54–73. doi: 10.1002/inf2.12005. DOI
Jin Y. Li X. Yang J. Phys. Chem. Chem. Phys. 2015;17:18665–18669. doi: 10.1039/C5CP02813B. PubMed DOI
Liu H. Yu X. Wu K. Gao Y. Tongay S. Javey A. Chen L. Hong J. Wu J. Nano Lett. 2020;20:5221–5227. doi: 10.1021/acs.nanolett.0c01476. PubMed DOI
Li H. Sanchez-Santolino G. Puebla S. Frisenda R. Al-Enizi A. M. Nafady A. D’Agosta R. Castellanos-Gomez A. Adv. Mater. 2022;34:2103571. doi: 10.1002/adma.202103571. PubMed DOI PMC
Li M. Dai J. Zeng X. C. Nanoscale. 2015;7:15385–15391. doi: 10.1039/C5NR04505C. PubMed DOI
Bertolazzi S. Brivio J. Kis A. ACS Nano. 2011;5:9703–9709. doi: 10.1021/nn203879f. PubMed DOI
Manzeli S. Allain A. Ghadimi A. Kis A. Nano Lett. 2015;15:5330–5335. doi: 10.1021/acs.nanolett.5b01689. PubMed DOI
Si C. Sun Z. Liu F. Nanoscale. 2016;8:3207–3217. doi: 10.1039/C5NR07755A. PubMed DOI
Ahn G. H. Amani M. Rasool H. Lien D. H. Mastandrea J. P. Ager J. W. Dubey M. Chrzan D. C. Minor A. M. Javey A. Nat. Commun. 2017;8:1–8. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC
Yang R. Lee J. Ghosh S. Tang H. Sankaran R. M. Zorman C. A. Feng P. X. L. Nano Lett. 2017;17:4568–4575. doi: 10.1021/acs.nanolett.7b00730. PubMed DOI
Carrascoso F. Li H. Frisenda R. Castellanos-Gomez A. Nano Res. 2021;14:1698–1703. doi: 10.1007/s12274-020-2918-2. DOI
Roldán R. Castellanos-Gomez A. Cappelluti E. Guinea F. J. Phys.: Condens. Matter. 2015;27:313201. doi: 10.1088/0953-8984/27/31/313201. PubMed DOI
Carrascoso F. Frisenda R. Castellanos-Gomez A. Nano Mater. Sci. 2022;4:44–51. doi: 10.1016/j.nanoms.2021.03.001. DOI
Li H. Carrascoso F. Borrás A. Moreno G. P. Aparicio F. J. Barranco Á. Gómez A. C. Nano Res. 2024:1–8.
Osada K. Bae S. Tanaka M. Raebiger H. Shudo K. Suzuki T. J. Phys. Chem. C. 2016;120:4653–4659. doi: 10.1021/acs.jpcc.5b12441. DOI
Costa P. Ferreira A. Sencadas V. Viana J. C. Lanceros-Méndez S. Sens. Actuators, A. 2013;201:458–467. doi: 10.1016/j.sna.2013.08.007. DOI
Qin J. K. Sun H. L. Su T. Zhao W. Zhen L. Chai Y. Xu C. Y. Appl. Phys. Lett. 2021;119:201903. doi: 10.1063/5.0069569. DOI
Zhang Z. Li L. Horng J. Wang N. Z. Yang F. Yu Y. Zhang Y. Chen G. Watanabe K. Taniguchi T. Chen X. H. Wang F. Zhang Y. Nano Lett. 2017;17:6097–6103. doi: 10.1021/acs.nanolett.7b02624. PubMed DOI
An C. Xu Z. Shen W. Zhang R. Sun Z. Tang S. Xiao Y. F. Zhang D. Sun D. Hu X. Hu C. Yang L. Liu J. ACS Nano. 2019;13:3310–3319. doi: 10.1021/acsnano.8b09161. PubMed DOI
Island J. O. Molina-Mendoza A. J. Barawi M. Biele R. Flores E. Clamagirand J. M. Ares J. R. Sánchez C. Van Der Zant H. S. J. D’Agosta R. Ferrer I. J. Castellanos-Gomez A. 2D Mater. 2017;4:022003. doi: 10.1088/2053-1583/aa6ca6. DOI
Biele R. Flores E. Ares J. R. Sanchez C. Ferrer I. J. Rubio-Bollinger G. Gomez A. C. D’Agosta R. Nano Res. 2018;11:225–232. doi: 10.1007/s12274-017-1622-3. DOI
Grimme S. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Hamann D. R. Phys. Rev. B: Condens. Matter Mater. Phys. 2013;88:085117. doi: 10.1103/PhysRevB.88.085117. DOI
Madsen G. K. H. Carrete J. Verstraete M. J. Comput. Phys. Commun. 2018;231:140–145. doi: 10.1016/j.cpc.2018.05.010. DOI
De Jong M. Chen W. Angsten T. Jain A. Notestine R. Gamst A. Sluiter M. Ande C. K. Van Der Zwaag S. Plata J. J. Toher C. Curtarolo S. Ceder G. Persson K. A. Asta M. Sci. Data. 2015;2:1–13. PubMed PMC