Giant anisotropic piezoresponse of layered ZrSe3

. 2025 Jan 27 ; 10 (2) : 401-408. [epub] 20250127

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39717884

We investigated the effect of uniaxial strain on the electrical properties of few-layer ZrSe3 devices under compressive and tensile strains applied up to ±0.62% along different crystal directions. We observed that the piezoresponse, the change in resistance upon application of strain, of ZrSe3 strongly depends on both the direction in which electrical transport occurs and the direction in which uniaxial strain is applied. Notably, a remarkably high anisotropy in the gauge factor for a device with the transport occurring along the b-axis of ZrSe3 with GF = 68 when the strain is applied along the b-axis was obtained, and GF = 4 was achieved when strain is applied along the a-axis. This leads to an anisotropy ratio of almost 90%. Devices whose transport occurs along the a-axis, however, show much lower anisotropy in gauge factors when strain is applied along different directions, leading to an anisotropy ratio of 50%. Furthermore, ab initio calculations of strain dependent change in resistance showed the same trends of the anisotropy ratio as obtained from experimental results for both electrical transport and strain application directions, which were correlated with bandgap changes and different orbital contributions.

Zobrazit více v PubMed

Novoselov K. S. Jiang D. Schedin F. Booth T. J. Khotkevich V. V. Morozov S. V. Geim A. K. Proc. Natl. Acad. Sci. U. S. A. 2005;102:10451–10453. doi: 10.1073/pnas.0502848102. PubMed DOI PMC

Zhao S. Dong B. Wang H. Wang H. Zhang Y. Han Z. V. Zhang H. Nanoscale Adv. 2020;2:109–139. doi: 10.1039/C9NA00623K. PubMed DOI PMC

Li L. Yu Y. Ye G. J. Ge Q. Ou X. Wu H. Feng D. Chen X. H. Zhang Y. Nat. Nanotechnol. 2014;95:372–377. doi: 10.1038/nnano.2014.35. PubMed DOI

Cao L. Chen Q. Zhu Y. Tong K. Li W. Ma J. Jalali M. Huang Z. Wu J. Zhai Y. ACS Appl. Mater. Interfaces. 2024;16(15):19764–19770. doi: 10.1021/acsami.4c00881. PubMed DOI

Chenet D. A. Aslan O. B. Huang P. Y. Fan C. Van Der Zande A. M. Heinz T. F. Hone J. C. Nano Lett. 2015;15:5667–5672. PubMed

Choi B. K. Ulstrup S. Gunasekera S. M. Kim J. Lim S. Y. Moreschini L. Oh J. S. Chun S. H. Jozwiak C. Bostwick A. Rotenberg E. Cheong H. Lyo I. W. Mucha-Kruczynski M. Chang Y. J. ACS Nano. 2020;14:7880–7891. doi: 10.1021/acsnano.0c01054. PubMed DOI

Abudukelimu A., Kakushima K., Ahmet P., Genic M., Tsutsui K., Nishiyama A., Sugii N., Natori K., Hattori T. and Iwai H., in ICSICT-2010-2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Proceedings, 2010, pp. 1247–1249.

Liu E. Fu Y. Wang Y. Feng Y. Liu H. Wan X. Zhou W. Wang B. Shao L. Ho C. H. Huang Y. S. Cao Z. Wang L. Li A. Zeng J. Song F. Wang X. Shi Y. Yuan H. Hwang H. Y. Cui Y. Miao F. Xing D. Nat. Commun. 2015;6:1–7. PubMed PMC

Zhou Z. Liu H. Fan D. Cao G. Sheng C. ACS Appl. Mater. Interfaces. 2018;10:37031–37037. doi: 10.1021/acsami.8b12843. PubMed DOI

Chen M. Li L. Xu M. Li W. Zheng L. Wang X. Research. 2023;6:0066. PubMed PMC

Yuan H. Liu X. Afshinmanesh F. Li W. Xu G. Sun J. Lian B. Curto A. G. Ye G. Hikita Y. Shen Z. Zhang S. C. Chen X. Brongersma M. Hwang H. Y. Cui Y. Nat. Nanotechnol. 2015;10:707–713. doi: 10.1038/nnano.2015.112. PubMed DOI

Zhang E. Wang P. Li Z. Wang H. Song C. Huang C. Chen Z. G. Yang L. Zhang K. Lu S. Wang W. Liu S. Fang H. Zhou X. Yan H. Zou J. Wan X. Zhou P. Hu W. Xiu F. ACS Nano. 2016;10:8067–8077. doi: 10.1021/acsnano.6b04165. PubMed DOI

Yang H. Jussila H. Autere A. Komsa H. P. Ye G. Chen X. Hasan T. Sun Z. ACS Photonics. 2017;4:3023–3030. doi: 10.1021/acsphotonics.7b00507. DOI

Li L. Han W. Pi L. Niu P. Han J. Wang C. Su B. Li H. Xiong J. Bando Y. Zhai T. InfoMat. 2019;1:54–73. doi: 10.1002/inf2.12005. DOI

Jin Y. Li X. Yang J. Phys. Chem. Chem. Phys. 2015;17:18665–18669. doi: 10.1039/C5CP02813B. PubMed DOI

Liu H. Yu X. Wu K. Gao Y. Tongay S. Javey A. Chen L. Hong J. Wu J. Nano Lett. 2020;20:5221–5227. doi: 10.1021/acs.nanolett.0c01476. PubMed DOI

Li H. Sanchez-Santolino G. Puebla S. Frisenda R. Al-Enizi A. M. Nafady A. D’Agosta R. Castellanos-Gomez A. Adv. Mater. 2022;34:2103571. doi: 10.1002/adma.202103571. PubMed DOI PMC

Li M. Dai J. Zeng X. C. Nanoscale. 2015;7:15385–15391. doi: 10.1039/C5NR04505C. PubMed DOI

Bertolazzi S. Brivio J. Kis A. ACS Nano. 2011;5:9703–9709. doi: 10.1021/nn203879f. PubMed DOI

Manzeli S. Allain A. Ghadimi A. Kis A. Nano Lett. 2015;15:5330–5335. doi: 10.1021/acs.nanolett.5b01689. PubMed DOI

Si C. Sun Z. Liu F. Nanoscale. 2016;8:3207–3217. doi: 10.1039/C5NR07755A. PubMed DOI

Ahn G. H. Amani M. Rasool H. Lien D. H. Mastandrea J. P. Ager J. W. Dubey M. Chrzan D. C. Minor A. M. Javey A. Nat. Commun. 2017;8:1–8. doi: 10.1038/s41467-016-0009-6. PubMed DOI PMC

Yang R. Lee J. Ghosh S. Tang H. Sankaran R. M. Zorman C. A. Feng P. X. L. Nano Lett. 2017;17:4568–4575. doi: 10.1021/acs.nanolett.7b00730. PubMed DOI

Carrascoso F. Li H. Frisenda R. Castellanos-Gomez A. Nano Res. 2021;14:1698–1703. doi: 10.1007/s12274-020-2918-2. DOI

Roldán R. Castellanos-Gomez A. Cappelluti E. Guinea F. J. Phys.: Condens. Matter. 2015;27:313201. doi: 10.1088/0953-8984/27/31/313201. PubMed DOI

Carrascoso F. Frisenda R. Castellanos-Gomez A. Nano Mater. Sci. 2022;4:44–51. doi: 10.1016/j.nanoms.2021.03.001. DOI

Li H. Carrascoso F. Borrás A. Moreno G. P. Aparicio F. J. Barranco Á. Gómez A. C. Nano Res. 2024:1–8.

Osada K. Bae S. Tanaka M. Raebiger H. Shudo K. Suzuki T. J. Phys. Chem. C. 2016;120:4653–4659. doi: 10.1021/acs.jpcc.5b12441. DOI

Costa P. Ferreira A. Sencadas V. Viana J. C. Lanceros-Méndez S. Sens. Actuators, A. 2013;201:458–467. doi: 10.1016/j.sna.2013.08.007. DOI

Qin J. K. Sun H. L. Su T. Zhao W. Zhen L. Chai Y. Xu C. Y. Appl. Phys. Lett. 2021;119:201903. doi: 10.1063/5.0069569. DOI

Zhang Z. Li L. Horng J. Wang N. Z. Yang F. Yu Y. Zhang Y. Chen G. Watanabe K. Taniguchi T. Chen X. H. Wang F. Zhang Y. Nano Lett. 2017;17:6097–6103. doi: 10.1021/acs.nanolett.7b02624. PubMed DOI

An C. Xu Z. Shen W. Zhang R. Sun Z. Tang S. Xiao Y. F. Zhang D. Sun D. Hu X. Hu C. Yang L. Liu J. ACS Nano. 2019;13:3310–3319. doi: 10.1021/acsnano.8b09161. PubMed DOI

Island J. O. Molina-Mendoza A. J. Barawi M. Biele R. Flores E. Clamagirand J. M. Ares J. R. Sánchez C. Van Der Zant H. S. J. D’Agosta R. Ferrer I. J. Castellanos-Gomez A. 2D Mater. 2017;4:022003. doi: 10.1088/2053-1583/aa6ca6. DOI

Biele R. Flores E. Ares J. R. Sanchez C. Ferrer I. J. Rubio-Bollinger G. Gomez A. C. D’Agosta R. Nano Res. 2018;11:225–232. doi: 10.1007/s12274-017-1622-3. DOI

Grimme S. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Hamann D. R. Phys. Rev. B: Condens. Matter Mater. Phys. 2013;88:085117. doi: 10.1103/PhysRevB.88.085117. DOI

Madsen G. K. H. Carrete J. Verstraete M. J. Comput. Phys. Commun. 2018;231:140–145. doi: 10.1016/j.cpc.2018.05.010. DOI

De Jong M. Chen W. Angsten T. Jain A. Notestine R. Gamst A. Sluiter M. Ande C. K. Van Der Zwaag S. Plata J. J. Toher C. Curtarolo S. Ceder G. Persson K. A. Asta M. Sci. Data. 2015;2:1–13. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...