Distributional properties of the entropy transformed Weibull distribution and applications to various scientific fields
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39738345
PubMed Central
PMC11685511
DOI
10.1038/s41598-024-83132-w
PII: 10.1038/s41598-024-83132-w
Knihovny.cz E-zdroje
- Klíčová slova
- Entropy transformation, Modeling, Simulation, Survival function, Weibull model,
- Publikační typ
- časopisecké články MeSH
A novel two-parameter continuous model titled the entropy-transformed Weibull (ET-W) distribution has been developed via the entropy transformation. A new framework has been investigated and found to meet the criteria of the probability function. By significantly improving the functional shape and having the ability to model the most likely form of the hazard rate function, this novel modification has increased the adaptability of typical model. Some of its core characteristics, such as its statistical and computational features, are simply and clearly presented. To examine the ultimate performance of maximum likelihood estimators during the process of estimating model parameters, a comprehensive simulation analysis has been conducted. The effectiveness of the suggested distribution is illustrated through the modeling of real datasets.
Department of Mathematical Sciences UAE University P O Box 15551 Al Ain United Arab Emirates
Department of Statistics Quaid 1 Azam University 45320 Islamabad 44000 Pakistan
IT4Innovations VSB Technical University of Ostrava Ostrava 70800 Czech Republic
Zobrazit více v PubMed
Liu, Y., Liu, C. & Wang, D. Understanding atmospheric behavior in terms of entropy: A review of applications of the second law of thermodynamics to meteorology. Entropy13, 211–240. 10.3390/e13010211 (2011).
Seidenfeld, T. Entropy and uncertainty. Philosophy Sci.53(4), 467–491. 10.1086/289336 (1986).
Brissaud, J. B. The meanings of entropy. Entropy7(1), 68–96. 10.3390/e7010068 (2005).
Ou, J. Theory of portfolio and risk based on incremental entropy. J. Risk Finance6(1), 31–39. 10.1108/15265940510574754 (2005).
Xu, J., Zhou, X. & Wu, D. D. Portfolio selection using λ mean and hybrid entropy. Ann. Oper. Res.185, 213–229. 10.1007/s10479-009-0550-3 (2011).
Shaw, D. & Davis, C. H. Entropy and information: A multidisciplinary overview. J. Am. Soc. Inf. Sci.34, 67–74. 10.1002/asi.4630340110 (1983).
Flores, C. F., Ulloa Lugo, N. & Covarrubias Martínez, H. The concept of entropy, from its origins to teachers. Revista Mexicana de Física E61(2), 69–80 (2015).
Zhou, R. X., Liu, S. C. & Qiu, W. H. Survey of applications of entropy in decision analysis. Control Decis.23, 361–371 (2008).
Pan, L. & Deng, Y. A new belief entropy to measure uncertainty of basic probability assignments based on belief function and plausibility function. Entropy20(11), 842. 10.3390/e20110842 (2018). PubMed PMC
Popovic, M. Researchers in an entropy wonderland: A review of the entropy concept. Preprint arXiv:1711.07326, 1–29 (2017). 10.48550/arXiv.1711.07326
Kuo, W. & Zuo, M. J. Optimal reliability modeling: Principles and applications (John Wiley and Sons, 2001). 10.1198/tech.2004.s742.
Lai, C. D., Murthy, D. N. P. & Xie, M. Weibull distributions. Wiley Interdiscipl. Rev. Comput. Stat.3(3), 282–287 (2011).
Almalki, S. J. & Yuan, J. A new modified Weibull distribution. Reliabil. Eng. Syst. Safety111, 164–170 (2013).
Marshall, A. W. & Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika84, 641–652 (1997).
Sarhan, A. M. & Zaindin, M. Modified Weibull distribution. APPS Appl. Sci.11, 123–136 (2009).
Mudholkar, G. S. & Srivastava, D. K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliabil.42(2), 299–302 (1993).
Bidram, H., Alamatsaz, M. H. & Nekoukhou, V. On an extension of the exponentiated Weibull distribution. Commun. Stat. Simulat. Comput.44(6), 1389–1404 (2015).
Xu, M., Droguett, E. L., Lins, I. D. & das Chagas Moura, M. On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation. Reliabil. Eng. Syst. Safety158, 93–105 (2017).
Cordeiro, G. M., Lima, M. D. C. S., Gomes, A. E., da Silva, C. Q. & Ortega, E. M. The gamma extended Weibull distribution. J. Statist. Distribut. Appl.3, 1–19 (2016).
Carrasco, J. M., Ortega, E. M. & Cordeiro, G. M. A generalized modified Weibull distribution for lifetime modeling. Comput. Statist. Data Analy.53(2), 450–462 (2008).
Singla, N., Jain, K. & Sharma, S. K. The beta generalized Weibull distribution: Properties and applications. Reliabil. Eng. Syst. Safety102, 5–15 (2012).
Sarhan, A. M. & Apaloo, J. Exponentiated modified Weibull extension distribution. Reliabil. Eng. Syst. Safety112, 137–144 (2013).
Méndez-González, L. C., Rodríguez-Picón, L. A., Valles-Rosales, D. J., Alvarado Iniesta, A. & Carreón, A. E. Q. Reliability analysis using exponentiated Weibull distribution and inverse power law. Quality Reliabil. Eng. Int.35(4), 1219–1230 (2019).
Shakhatreh, M. K., Lemonte, A. J. & Moreno-Arenas, G. The log-normal modified Weibull distribution and its reliability implications. Reliabil. Eng. Syst. Safety188, 6–22 (2019).
Phani, K. K. A new modified Weibull distribution function. Commun. Am. Ceramic Soc.70, 182–184 (1987).
Silva, G. O., Ortega, E. M. & Cordeiro, G. M. The beta modified Weibull distribution. Lifetime Data Analy.16, 409–430 (2010). PubMed
Cordeiro, G. M., Hashimoto, E. M. & Ortega, E. M. The McDonald Weibull model. Statistics48(2), 256–278 (2014).
Shannon, C. E. The mathematical theory of communication. Bell Syst. Techn. J.27(3), 379–423. 10.1002/j.1538-7305.1948.tb01338.x (1948).
Isaic-Maniu, A. Some comments on an entropy-like transformation of Soleha and Sewilam. Econ. Comput. Econ. Cybernetics Stud. Res.42, 5–11. 10.1017/S0269964801151077 (2008).
Sindhu, T. N., Shafiq, A., Lone, S. A. & Abushal, T. A. The entropy-transformed Gompertz distribution: Distributional insights and cross-disciplinary utilizations. Kuwait J. Sci.52(1), 100335 (2025).
Ali, A., Naeem, S., Anam, S. & Ahmed, M. M. Entropy in information theory from many perspectives and various mathematical models. J. Appl. Emerg. Sci.12(2), 156–165 (2022).
Pan, L. & Deng, Y. A new belief entropy to measure uncertainty of basic probability assignments based on belief function and plausibility function. Entropy20(11), 842 (2018). PubMed PMC
Tsallis, C., Mendes, R. & Plastino, A. R. The role of constraints within generalized nonextensive statistics. Phys. A Statist. Mechan. Appl.261(3–4), 534–554 (1998).
Mathai, A. M. & Haubold, H. J. On generalized distributions and pathways. Phys. Lett. A372(12), 2109–2113 (2008).
Havrda, J. & Charvat, F. Quantification method of classification processes, Concept of structural-entropy. Kybernetika3, 30–35 (1967).
Arimoto, S. Information-theoretical considerations on estimation problems. Inf. Control19(3), 181–194 (1971).
Sindhu, T. N. et al. Introducing the new arcsine-generator distribution family: An in-depth exploration with an illustrative example of the inverse Weibull distribution for analyzing healthcare industry data. J. Radiat. Res. Appl. Sci.17(2), 100879 (2024).
Shafiq, A. et al. A new modified Kies Fréchet distribution: Applications of mortality rate of Covid-19. Res. Phys.28, 104638 (2021). PubMed PMC
Shafiq, A., Sindhu, T. N. & Alotaibi, N. A novel extended model with versatile shaped failure rate: Statistical inference with COVID-19 applications. Res. Phys.36, 105398 (2022). PubMed PMC
Jia, J., Yan, Z., Song, H. & Chen, Y. Reliability estimation in multicomponent stress–strength model for generalized inverted exponential distribution. Soft Comput.27(2), 903–916 (2023).
Zhuang, L., Xu, A., Wang, Y. & Tang, Y. Remaining useful life prediction for two-phase degradation model based on reparameterized inverse Gaussian process. Eur. J. Operat. Res.319(3), 877–890 (2024).
He, D., Sun, D. & Zhu, Q. Bayesian analysis for the Lomax model using noninformative priors. Statist. Theory Related Fields7(1), 61–68 (2023).
Xu, A., Fang, G., Zhuang, L. & Gu, C. A multivariate student-t process model for dependent tail-weighted degradation data. IISE Trans.10.1080/24725854.2024.2389538 (2024).
Alotaibi, R., Nassar, M. & Elshahhat, A. Estimations of modified lindley parameters using progressive type-II censoring with applications. Axioms12(2), 171 (2023).
Alomani, G. & Emam, W. A Bayesian and classical estimation of the new probabilistic Inverted Topp Leone Weibull distribution with application. (2023).
Ross, M. S. Introductory statistics 3rd edn, 365 (Elsevier, 2010).
Lai, C. D., Xie, M. & Murthy, D. N. P. Modified Weibull model. IEEE Trans. Reliabil.52, 33–37 (2003).
Sindhu, T. N., Shafiq, A. & Huassian, Z. Generalized exponentiated unit Gompertz distribution for modeling arthritic pain relief times data: classical approach to statistical inference. J. Biopharmaceut. Statist.34(3), 323–348 (2024). PubMed
Sindhu, T. N., Shafiq, A., Mazucheli, J., Özel, G. & Alves, B. Some additional facts about the unit-Gompertz distribution. Chilean J. Statist. (ChJS)10.32372/ChJS.14-02-05 (2023).
Shafiq, A., Sindhu, T. N., Hussain, Z., Mazucheli, J. & Alves, B. A flexible probability model for proportion data: Unit Gumbel type-II distribution, development, properties, different method of estimations and applications. Austrian J. Statist.52(2), 116–140 (2023).