Accurate and fast segmentation of filaments and membranes in micrographs and tomograms with TARDIS
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
R01 GM144668
NIGMS NIH HHS - United States
R01 HL168178
NHLBI NIH HHS - United States
PubMed
39763817
PubMed Central
PMC11702698
DOI
10.1101/2024.12.19.629196
PII: 2024.12.19.629196
Knihovny.cz E-resources
- Keywords
- Actin, CNN, Cryo-EM, Cryo-ET, DIST, Filaments, Instance Segmentation, Membranes, Microtubules, Point Cloud, Segmentation, Semantic Segmentation, TARDIS, TEM EM/ET,
- Publication type
- Journal Article MeSH
- Preprint MeSH
Segmentation of macromolecular structures is the primary bottleneck for studying biomolecules and their organization with electron microscopy in 2D/3D - requiring months of manual effort. Transformer-based Rapid Dimensionless Instance Segmentation (TARDIS) is a deep learning framework that automatically and accurately annotates membranes and filaments. Pre-trained TARDIS models can segment electron tomography (ET) reconstructions from both 3D and 2D electron micrographs of cryo and plastic-embedded samples. Furthermore, by implementing a novel geometric transformer architecture, TARDIS is the only method to provide accurate instance segmentations of these structures. Reducing the annotation time for ET data from months to minutes, we demonstrate segmentation of membranes and filaments in over 13,000 tomograms in the CZII Data Portal. TARDIS thus enables quantitative biophysical analysis at scale for the first time. We show this in application to kinetochore-microtubule attachment and viral-membrane interactions. TARDIS can be extended to new biomolecules and applications and open-source at https://github.com/SMLC-NYSBC/TARDIS.
Center for Computational Biology Flatiron Institute New York United States
Department of Anesthesiology Columbia University Irving Medical Center New York United States
Department of Cell Biology University of Virginia School of Medicine Charlottesville United States
Department of Chemistry and Biochemistry City College of New York United States
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
Simons Electron Microscopy Center New York Structural Biology Center New York United States
Simons Machine Learning Center New York Structural Biology Center New York United States
Structural Biology Initiative CUNY Advanced Science Research Center New York United States
See more in PubMed
Steere R. L. Electron microscopy of structural detail in frozen biological specimens. J. Biophys. Biochem. Cytol. 3, 45–60 (1957). PubMed PMC
Milne J. L. S. et al. Cryo-electron microscopy--a primer for the non-microscopist. FEBS J. 280, 28–45 (2013). PubMed PMC
Mastronarde D. N. Dual-Axis Tomography: An Approach with Alignment Methods That Preserve Resolution. Journal of Structural Biology 120, 343–352 (December 1997). PubMed
McEwen B. F. & Marko M. Chapter 5 Three-Dimensional Transmission Electron Microscopy and Its Application to Mitosis Research. in 81–111 (1998). PubMed
Peddie C. J. et al. Volume electron microscopy. Nat. Rev. Methods Primers 2, 51 (2022). PubMed PMC
Doerr A. Cryo-electron tomography. Nat. Methods 14, 34–34 (2017).
Nogales E. & Mahamid J. Bridging structural and cell biology with cryo-electron microscopy. Nature 628, 47–56 (2024). PubMed PMC
Tollervey F., Rios M. U., Zagoriy E., Woodruff J. B. & Mahamid J. Native molecular architectures of centrosomes in C. elegans embryos. bioRxivorg (2024) doi: 10.1101/2024.04.03.587742. PubMed DOI PMC
Berger C. et al. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat. Methods 20, 499–511 (2023). PubMed
Kiewisz R. et al. Three-dimensional structure of kinetochore-fibers in human mitotic spindles. Elife 11, (July 2022). PubMed PMC
Redemann S. et al. C. elegans chromosomes connect to centrosomes by anchoring into the spindle network. Nat. Commun. 8, 15288 (August 2017). PubMed PMC
Yu C.-H. et al. Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B. Molecular Biology of the Cell 30, 2503–2514 (September 2019). PubMed PMC
Xu C., Han W. & Cong Y. Cryo-EM and cryo-ET of the spike, virion, and antibody neutralization of SARS-CoV-2 and VOCs. Curr. Opin. Struct. Biol. 82, 102664 (2023). PubMed
van Hoorn C. & Carter A. P. A cryo-ET study of ciliary rootlet organization. (2024) doi: 10.7554/elife.91642. PubMed DOI PMC
Creekmore B. C., Kixmoeller K., Black B. E., Lee E. B. & Chang Y.-W. Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling. Nat. Commun. 15, 2660 (2024). PubMed PMC
Guaita M., Watters S. C. & Loerch S. Recent advances and current trends in cryo-electron microscopy. Curr. Opin. Struct. Biol. 77, 102484 (2022). PubMed PMC
Iudin A. et al. EMPIAR: The electron microscopy public image archive. Nucleic Acids Res. 51, D1503–D1511 (2023). PubMed PMC
The Chan Zuckerberg Institute. Cryo-ET Data Portal. Preprint at (2023).
Ermel U. et al. A data portal for providing standardized annotations for cryo-electron tomography. Nat. Methods (2024) doi: 10.1038/s41592-024-02477-2. PubMed DOI
wwPDB Consortium. EMDB-the Electron Microscopy Data Bank. Nucleic Acids Res. 52, D456–D465 (2024). PubMed PMC
Eisenstein F. et al. Parallel cryo electron tomography on in situ lamellae. Nat. Methods 20, 131–138 (2023). PubMed
Kiewisz R., Baum D., Müller-Reichert T. & Fabig G. Serial-section Electron Tomography and Quantitative Analysis of Microtubule Organization in 3D-reconstructed Mitotic Spindles. Bio Protoc. 13, (2023). PubMed PMC
Gudimchuk N. B. et al. Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography. Nat. Commun. 11, 1–15 (July 2020). PubMed PMC
McLaren M. et al. CryoEM reveals that ribosomes in microsporidian spores are locked in a dimeric hibernating state. Nat. Microbiol. 8, 1834–1845 (2023). PubMed PMC
Franken L. E. et al. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy. Nat. Commun. 8, (2017). PubMed PMC
Bepler T. et al. Antiviral activity of the host defense peptide piscidin 1: investigating a membrane-mediated mode of action. Front. Chem. 12, 1379192 (2024). PubMed PMC
Bepler T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019). PubMed PMC
Fabig G. et al. Male meiotic spindle features that efficiently segregate paired and lagging chromosomes. eLife 9, (March 2020). PubMed PMC
Redemann S. & Nazockdast E. Integrated 3D Tomography and Computational Modeling to Study Forces in Metaphase Spindles. FASEB J. 34, 1–1 (April 2020).
Mendonça L. et al. Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. Nat. Commun. 12, 4629 (2021). PubMed PMC
Rast A. et al. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 5, 436–446 (2019). PubMed
Heinrich L. et al. Whole-cell organelle segmentation in volume electron microscopy. Nature 599, 141–146 (2021). PubMed
Zimyanin V. et al. Using 3D large scale tomography to study force generation in the mitotic spindle. Microsc. Microanal. 30, (2024).
Hylton R. K. & Swulius M. T. Challenges and triumphs in cryo-electron tomography. iScience 24, 102959 (2021). PubMed PMC
Schindelin J. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682 (July 2012). PubMed PMC
Chiu C.-L., Clack N. & the napari community. napari: a Python Multi-Dimensional Image Viewer Platform for the Research Community. in (Microscopy and Methods, 2022).
Kremer J. R., Mastronarde D. N. & McIntosh J. R. Computer Visualization of Three-Dimensional Image Data Using IMOD. Journal of Structural Biology 116, 71–76 (January 1996). PubMed
Martinez-Sanchez A., Garcia I., Asano S., Lucic V. & Fernandez J.-J. Robust membrane detection based on tensor voting for electron tomography. J. Struct. Biol. 186, 49–61 (2014). PubMed
Lorenz L. et al. MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography. bioRxivorg (2023).
Stalling D., Westerhoff M. & Hege H.-C. Amira: a Highly Interactive System for Visual Data Analysis. in (eds. Hansen C. D. & Johnson C. R.) 749–767 (Elsevier, 2005).
Inc., C. T. C. Dragonfly. Preprint at (2022).
Archit A. et al. Segment Anything for microscopy. Nat. Methods 1–13 (2025). PubMed PMC
Kiewisz R., Fabig G., Müller-Reichert T. & Bepler T. Automated Segmentation of 3D Cytoskeletal Filaments from Electron Micrographs with TARDIS. Microsc. Microanal. 29, 970–972 (July 2023).
Kiewisz R. & Bepler T. Membrane and microtubule rapid instance segmentation with dimensionless instance segmentation by learning graph representations of point clouds. NeurIPS Machine Learning in Structural Biology Workshop Preprint at (2022).
Lomonossoff G. P. & Wege C. TMV particles: The journey from fundamental studies to bionanotechnology applications. Adv. Virus Res. 102, 149–176 (2018). PubMed PMC
Franklin R. E. Structure of tobacco mosaic virus: Location of the ribonucleic acid in the tobacco mosaic virus particle. Nature 177, 928–930 (1956).
Ishemgulova A., Noble A., Bepler T. & De Marco A. Preparation Of Labeled Cryo-ET Datasets For Training And Evaluation Of Machine Learning Models. in (NeurIPS, 2023).
Conway W., Ha G. & Needleman D. Dual mechanism of kinetochore microtubule detachment. Biophysics (2023).
Tooley J. & Stukenberg P. T. The Ndc80 complex: integrating the kinetochore’s many movements. Chromosome Res. 19, 377–391 (2011). PubMed PMC
Agarwal S. et al. Cdt1 stabilizes kinetochore–microtubule attachments via an Aurora B kinase–dependent mechanism. J. Cell Biol. 217, 3446–3463 (October 2018). PubMed PMC
Godek K. M., Kabeche L. & Compton D. A. Regulation of kinetochore–microtubule attachments through homeostatic control during mitosis. Nat. Rev. Mol. Cell Biol. 16, 57–64 (January 2015). PubMed PMC
Cimini D. et al. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol. 153, 517–527 (2001). PubMed PMC
Ribeiro R. M. et al. Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection. J. Virol. 84, 6096–6102 (2010). PubMed PMC
Bartholomeeusen K. et al. Chikungunya fever. Nat. Rev. Dis. Primers 9, 17 (2023). PubMed PMC
Harrison S. C. Viral membrane fusion. Virology 479-480, 498–507 (2015). PubMed PMC
Roy S. K. & Bhattacharjee S. Dengue virus: epidemiology, biology, and disease aetiology. Can. J. Microbiol. 67, 687–702 (2021). PubMed
Ooi J. S. G. et al. Tomography studies of the dengue fusion process. Acta Crystallogr. A Found. Adv. 79, C566–C566 (August 2023).
Gong B., Johnston J. D., Thiemicke A., de Marco A. & Meyer T. Endoplasmic reticulum-plasma membrane contact gradients direct cell migration. Nature 631, 415–423 (2024). PubMed PMC
Sharma K. D., Doktorova M., Waxham M. N. & Heberle F. A. Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach. Biophys. J. 123, 2877–2891 (2024). PubMed PMC
Mehta D. et al. Halogenated cholesterol alters the phase behavior of ternary lipid membranes. J. Phys. Chem. B 129, 671–683 (2025). PubMed
Heberle F. A. & Waxham M. N. Phase separation in model lipid membranes investigated with cryogenic electron microscopy. Methods Enzymol. 700, 189–216 (2024). PubMed
Redemann S. et al. The Segmentation of Microtubules in Electron Tomograms Using Amira. in (ed. Sharp D. J.) vol. 1136 261–278 (Springer Science+ Business Media, 2014). PubMed
Nogales E. & Downing K. H. Tubulin and Microtubule Structures. in 211–225 (Humana Press, January 2009).
Jiang T. & Cheng J. Target recognition based on CNN with LeakyReLU and PReLU activation functions. in 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC) (IEEE, 2019). doi: 10.1109/sdpc.2019.00136. DOI
Kiewisz R., Müller-Reichert T. & Fabig G. High-throughput screening of mitotic mammalian cells for electron microscopy using classic histological dyes. in (eds. Müller-Reichert T. & Verkade P.) vol. 162 151–170 (Academic Press Inc., 2021). PubMed
Mastronarde D. N. Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology 152, 36–51 (October 2005). PubMed
Mastronarde D. N. SerialEM: A Program for Automated Tilt Series Acquisition on Tecnai Microscopes Using Prediction of Specimen Position. Microsc. Microanal. 9, 1182–1183 (August 2003).
Lindow N. et al. Semi automatic stitching of filamentous structures in image stacks from serial section electron tomography. J. Microsc. 284, 25–44 (October 2021). PubMed
Banks E. J. et al. Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nat. Commun. 13, 1509 (2022). PubMed PMC
Foster H. E., Ventura Santos C. & Carter A. P. A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. J. Cell Biol. 221, (2022). PubMed PMC
Jumper J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (August 2021). PubMed PMC