Accurate and fast segmentation of filaments and membranes in micrographs and tomograms with TARDIS
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 GM144668
NIGMS NIH HHS - United States
R01 HL168178
NHLBI NIH HHS - United States
PubMed
39763817
PubMed Central
PMC11702698
DOI
10.1101/2024.12.19.629196
PII: 2024.12.19.629196
Knihovny.cz E-zdroje
- Klíčová slova
- CNN, Cryo-EM/ET, DIST, Filaments, Instance Segmentation, Membranes, Microtubules, Point Cloud, Segmentation, Semantic Segmentation, TARDIS, TEM EM/ET,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
It is now possible to generate large volumes of high-quality images of biomolecules at near-atomic resolution and in near-native states using cryogenic electron microscopy/electron tomography (Cryo-EM/ET). However, the precise annotation of structures like filaments and membranes remains a major barrier towards applying these methods in high-throughput. To address this, we present TARDIS (Transformer-based Rapid Dimensionless Instance Segmentation), a machine-learning framework for fast and accurate annotation of micrographs and tomograms. TARDIS combines deep learning for semantic segmentation with a novel geometric model for precise instance segmentation of various macromolecules. We develop pre-trained models within TARDIS for segmenting microtubules and membranes, demonstrating high accuracy across multiple modalities and resolutions, enabling segmentation of over 13,000 tomograms from the CZI Cryo-Electron Tomography data portal. As a modular framework, TARDIS can be extended to new structures and imaging modalities with minimal modification. TARDIS is open-source and freely available at https://github.com/SMLC-NYSBC/TARDIS, and accelerates analysis of high-resolution biomolecular structural imaging data.
Center for Computational Biology Flatiron Institute New York United State
Department of Anesthesiology Columbia University Irving Medical Center New York United States
Department of Cell Biology University of Virginia School of Medicine Charlottesville United States
Department of Chemistry and Biochemistry City College of New York United States
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
Simons Electron Microscopy Center New York Structural Biology Center New York United States
Simons Machine Learning Center New York Structural Biology Center New York United States
Structural Biology Initiative CUNY Advanced Science Research Center New York United States
Zobrazit více v PubMed
Steere R. L. Electron microscopy of structural detail in frozen biological specimens. J. Biophys. Biochem. Cytol. 3, 45–60 (1957). PubMed PMC
Milne J. L. S. et al. Cryo-electron microscopy--a primer for the non-microscopist. FEBS J. 280, 28–45 (2013). PubMed PMC
Mastronarde D. N. Dual-Axis Tomography: An Approach with Alignment Methods ThatPreserve Resolution. Journal of Structural Biology 120, 343–352 (December 1997). PubMed
McEwen B. F. & Marko M. Chapter 5 Three-Dimensional Transmission Electron Microscopy and Its Application to Mitosis Research. in 81–111 (1998). doi:10.1016/S0091-679X(08)61976-7. PubMed DOI
Peddie C. J. et al. Volume electron microscopy. Nat. Rev. Methods Primers 2, 51 (2022). PubMed PMC
Doerr A. Cryo-electron tomography. Nat. Methods 14, 34–34 (2017).
Nogales E. & Mahamid J. Bridging structural and cell biology with cryo-electron microscopy. Nature 628, 47–56 (2024). PubMed PMC
Tollervey F., Rios M. U., Zagoriy E., Woodruff J. B. & Mahamid J. Native molecular architectures of centrosomes in C. elegans embryos. bioRxivorg (2024) doi:10.1101/2024.04.03.587742. PubMed DOI PMC
Berger C. et al. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat. Methods 20, 499–511 (2023). PubMed
Kiewisz R. et al. Three-dimensional structure of kinetochore-fibers in human mitotic spindles. Elife 11, (July 2022). PubMed PMC
Redemann S. et al. C. elegans chromosomes connect to centrosomes by anchoring into the spindle network. Nat. Commun. 8, 15288 (August 2017). PubMed PMC
Yu C.-H. et al. Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B. Molecular Biology of the Cell 30, 2503–2514 (September 2019). PubMed PMC
Xu C., Han W. & Cong Y. Cryo-EM and cryo-ET of the spike, virion, and antibody neutralization of SARS-CoV-2 and VOCs. Curr. Opin. Struct. Biol. 82, 102664 (2023). PubMed
van Hoorn C. & Carter A. P. A cryo-ET study of ciliary rootlet organization. (2024) doi:10.7554/elife.91642. PubMed DOI PMC
Creekmore B. C., Kixmoeller K., Black B. E., Lee E. B. & Chang Y.-W. Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling. Nat. Commun. 15, 2660 (2024). PubMed PMC
Guaita M., Watters S. C. & Loerch S. Recent advances and current trends in cryo-electron microscopy. Curr. Opin. Struct. Biol. 77, 102484 (2022). PubMed PMC
Iudin A. et al. EMPIAR: The electron microscopy public image archive. Nucleic Acids Res. 51, D1503–D1511 (2023). PubMed PMC
The Chan Zuckerberg Institute. Cryo-ET Data Portal. Preprint at (2023).
Ermel U. et al. A data portal for providing standardized annotations for cryo-electron tomography. Nat. Methods (2024) doi:10.1038/s41592-024-02477-2. PubMed DOI
Eisenstein F. et al. Parallel cryo electron tomography on in situ lamellae. Nat. Methods 20, 131–138 (2023). PubMed
Kiewisz R., Baum D., Müller-Reichert T. & Fabig G. Serial-section Electron Tomography and Quantitative Analysis of Microtubule Organization in 3D-reconstructed Mitotic Spindles. Bio Protoc. 13, (2023). PubMed PMC
wwPDB Consortium. EMDB-the Electron Microscopy Data Bank. Nucleic Acids Res. 52, D456–D465 (2024). PubMed PMC
Gudimchuk N. B. et al. Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography. Nat. Commun. 11, 1–15 (July 2020). PubMed PMC
McLaren M. et al. CryoEM reveals that ribosomes in microsporidian spores are locked in a dimeric hibernating state. Nat. Microbiol. 8, 1834–1845 (2023). PubMed PMC
Franken L. E. et al. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy. Nat. Commun. 8, (2017). PubMed PMC
Bepler T. et al. Antiviral activity of the host defense peptide piscidin 1: investigating a membrane-mediated mode of action. Front. Chem. 12, 1379192 (2024). PubMed PMC
Fabig G. et al. Male meiotic spindle features that efficiently segregate paired and lagging chromosomes. eLife 9, (March 2020). PubMed PMC
Redemann S. & Nazockdast E. Integrated 3D Tomography and Computational Modeling to Study Forces in Metaphase Spindles. FASEB J. 34, 1–1 (April 2020).
Mendonça L. et al. Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. Nat. Commun. 12, 4629 (2021). PubMed PMC
Rast A. et al. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 5, 436–446 (2019). PubMed
Hylton R. K. & Swulius M. T. Challenges and triumphs in cryo-electron tomography. iScience 24, 102959 (2021). PubMed PMC
Zimyanin V. et al. Using 3D large scale tomography to study force generation in the mitotic spindle. Microsc. Microanal. 30, (2024).
Heinrich L. et al. Whole-cell organelle segmentation in volume electron microscopy. Nature 599, 141–146 (2021). PubMed
Schindelin J. et al. Fiji: an open-source platform for biological-image analysis. NatureMethods 9, 676–682 (July 2012). PubMed PMC
Contributors N. napari: a multi-dimensional image viewer for python. Zenodo Preprint at (2019).
Kremer J. R., Mastronarde D. N. & McIntosh J. R. Computer Visualization of Three-Dimensional Image Data Using IMOD. Journal of Structural Biology 116, 71–76 (January 1996). PubMed
Martinez-Sanchez A., Garcia I., Asano S., Lucic V. & Fernandez J.-J. Robust membrane detection based on tensor voting for electron tomography. J. Struct. Biol. 186, 49–61 (2014). PubMed
Lorenz L. et al. MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography. bioRxivorg (2023).
Stalling D., Westerhoff M. & Hege H.-C. Amira: a Highly Interactive System for VisualData Analysis. in (eds. Hansen C. D. & Johnson C. R.) 749–767 (Elsevier, 2005).
Inc. C. T. C. Dragonfly. Preprint at (2022).
Kiewisz R., Fabig G., Müller-Reichert T. & Bepler T. Automated Segmentation of 3D Cytoskeletal Filaments from Electron Micrographs with TARDIS. Microsc. Microanal. 29, 970–972 (July 2023).
Kiewisz R. & Bepler T. Membrane and microtubule rapid instance segmentation with dimensionless instance segmentation by learning graph representations of point clouds. NeurIPS Machine Learning in Structural Biology Workshop Preprint at (2022).
Lomonossoff G. P. & Wege C. TMV particles: The journey from fundamental studies to bionanotechnology applications. Adv. Virus Res. 102, 149–176 (2018). PubMed PMC
Franklin R. E. Structure of tobacco mosaic virus: Location of the ribonucleic acid in the tobacco mosaic virus particle. Nature 177, 928–930 (1956).
NeurIPS Preparation Of Labeled Cryo-ET Datasets For Training And Evaluation Of Machine Learning Models. https://neurips.cc/virtual/2023/77456.
Banks E. J. et al. Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nat. Commun. 13, 1509 (2022). PubMed PMC
Foster H. E., Ventura Santos C. & Carter A. P. A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. J. Cell Biol. 221, (2022). PubMed PMC
Ooi J. S. G. et al. Tomography studies of the dengue fusion process. Acta Crystallogr. A Found. Adv. 79, C566–C566 (August 2023).
Redemann S. et al. The Segmentation of Microtubules in Electron Tomograms Using Amira. in (ed. Sharp D. J.) vol. 1136 261–278 (Springer Science+ Business Media, 2014). PubMed
Nogales E. & Downing K. H. Tubulin and Microtubule Structures. in 211–225 (Humana Press, January 2009). doi:10.1007/978-1-59745-336-3_9. DOI
Jiang T. & Cheng J. Target recognition based on CNN with LeakyReLU and PReLU activation functions. in 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC) (IEEE, 2019). doi:10.1109/sdpc.2019.00136. DOI
Jumper J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (8 2021). PubMed PMC