Inhibitory Effect of Human Anti-CA I Autoantibodies and Development of Monoclonal Antibody mAb 2B8 Targeting Carbonic Anhydrase I
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39764425
PubMed Central
PMC11703592
DOI
10.1155/mi/9981131
Knihovny.cz E-resources
- Keywords
- antitumor immune response, carbonic anhydrase I, epitope mapping, esterase activity, inhibitory effect,
- MeSH
- Autoantibodies * immunology metabolism MeSH
- Epitopes immunology chemistry MeSH
- Carbonic Anhydrase I * metabolism antagonists & inhibitors MeSH
- Humans MeSH
- Antibodies, Monoclonal * immunology MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Autoantibodies * MeSH
- Epitopes MeSH
- Carbonic Anhydrase I * MeSH
- Antibodies, Monoclonal * MeSH
Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions. Our study illuminates the profound impact of anti-CA I autoantibodies from patient serum on the esterase activity of human CA I, exhibiting inhibitory effects akin to the acetazolamide inhibitor. Concurrently, our newly synthesized mouse monoclonal IgG antibody, mAb 2B8, against human CA I showcased a potent inhibitory action. An in-depth exploration into mAb 2B8's binding dynamics with its target enzyme was undertaken. Leveraging epitope extraction and phage display library techniques, we identified the amino acid sequence DFWTYP (positions 191-196 of CA I) as crucial for mAb 2B8's interaction. In 3-D structural analysis, this sequence is spatially adjacent to a previously identified epitope (DFWTYP) that interacts with patient-derived autoantibodies. Critically, mAb 2B8 demonstrated an ability to infiltrate eukaryotic cells, engaging specifically with its intracytoplasmic target. This positions mAb 2B8 as a promising model for future studies aimed at tumor cell eradication.
Biomedical Research Center Slovak Academy of Sciences Bratislava Slovakia
Institute of Chemistry Slovak Academy of Sciences Bratislava Slovakia
Institute of Microbiology Czech Academy of Sciences Prague Czech Republic
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
See more in PubMed
Imtaiyaz Hassan M., Shajee B., Waheed A., Ahmad F., Sly W. S. Structure, Function and Applications of Carbonic Anhydrase Isozymes. Bioorganic & Medicinal Chemistry . 2013;21(6):1570–1582. doi: 10.1016/j.bmc.2012.04.044. PubMed DOI
Lindskog S. Structure and Mechanism of Carbonic Anhydrase. Pharmacology & Therapeutics . 1997;74(1):1–20. doi: 10.1016/S0163-7258(96)00198-2. PubMed DOI
Sterling D., Reithmeier R. A., Casey J. R. Carbonic Anhydrase: In the Driver’s Seat for Bicarbonate Transport. JOP: Journal of the Pancreas . 2001;2(4 Suppl):165–70. PubMed
Villeval J. L., Testa U., Vinci G., et al. Carbonic Anhydrase I Is an Early Specific Marker of Normal Human Erythroid Differentiation. Blood . 1985;66(5) PubMed
Boone C. D., Pinard M., McKenna R., Silverman D. Catalytic Mechanism of α-Class Carbonic Anhydrases: CO2 Hydration and Proton Transfer. In: Frost S., McKenna R., editors. Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications . Springer, Dordrecht; 2014. DOI
Bartolomé M. J., de las Heras G., López-Hoyos M. Low-Avidity Antibodies to Carbonic Anhydrase-I and -II in Autoimmune Chronic Pancreatitise. The Scientific World JOURNAL . 2002;2:1560–1568. doi: 10.1100/tsw.2002.811. PubMed DOI PMC
Gambhir K. K., Ornasir J., Headings V., Bonar A. Decreased Total Carbonic Anhydrase Esterase Activity and Decreased Levels of Carbonic Anhydrase 1 Isozyme in Erythrocytes of Type II Diabetic Patients. Biochemical Genetics . 2007;45(5-6):431–439. doi: 10.1007/s10528-007-9086-x. PubMed DOI
Itoh Y., Reichlin M. Antibodies to Carbonic Anhydrase in Systemic Lupus Erythematosus and Other Rheumatic Diseases. Arthritis & Rheumatism . 1992;35(1):73–82. doi: 10.1002/art.1780350112. PubMed DOI
Karahan S. C., Guven S., Mentese A., Bacak A., Kopuz M., Ozeren M. Serum Anti-Carbonic Anhydrase I and II Antibodies and Idiopathic Recurrent Pregnancy Loss. Reproductive BioMedicine Online . 2009;19(6):859–863. doi: 10.1016/j.rbmo.2009.09.030. PubMed DOI
Kho K. H., Kim J. W., Kim S. C., et al. Identification and Intracellular Localization of Carbonic Anhydrase I in Gills, Heart, Muscle, and Intestine of Rainbow Trout, Oncorhynchus mykiss. Journal of the Korean Society for Applied Biological Chemistry . 2015;58(5):729–733. doi: 10.1007/s13765-015-0098-7. DOI
Mondrup M., Anker N. Carbonic Anhydrase Isoenzyme B in Erythrocytes of Subjects With Chronic Acidosis. Clinica Chimica Acta . 1979;92(3):361–366. doi: 10.1016/0009-8981(79)90214-6. PubMed DOI
Scher W., Parkes J., Friend C. Increased Carbonic Anhydrase Activity in Friend Erythroleukemia Cells During DMSO-Stimulated Erythroid Differentiation and Its Inhibition by BrdU. Cell Differentiation . 1977;6(5-6):285–296. doi: 10.1016/0045-6039(77)90003-3. PubMed DOI
Tange K., Yagi S., Takeshita E., et al. Oral Administration of Human Carbonic Anhydrase I Suppresses Colitis in a Murine Inflammatory Bowel Disease Model. Scientific Reports . 2022;12 doi: 10.1038/s41598-022-22455-y.17983 PubMed DOI PMC
Zheng Y., Wang L., Zhang W., Xu H., Chang X. Transgenic Mice Over-Expressing Carbonic Anhydrase I Showed Aggravated Joint Inflammation and Tissue Destruction. BMC Musculoskeletal Disorders . 2012;13 doi: 10.1186/1471-2474-13-256.256 PubMed DOI PMC
Tsou P., Katayama H., Ostrin E. J., Hanash S. M. The Emerging Role of B Cells in Tumor Immunity. Cancer Research . 2016;76(19):5597–5601. doi: 10.1158/0008-5472.CAN-16-0431. PubMed DOI
Bei R., Masuelli L., Palumbo C., Modesti M., Modesti A. A Common Repertoire of Autoantibodies Is Shared by Cancer and Autoimmune Disease Patients: Inflammation in Their Induction and Impact on Tumor Growth. Cancer Letters . 2009;281(1):8–23. doi: 10.1016/j.canlet.2008.11.009. PubMed DOI
Søgaard M., Farkas D. K., Ehrenstein V., Jørgensen J. O. L., Dekkers O. M., Sørensen H. T. Hypothyroidism and Hyperthyroidism and Breast Cancer Risk: A Nationwide Cohort Study. European Journal of Endocrinology . 2016;174(4):409–414. doi: 10.1530/EJE-15-0989. PubMed DOI
Takakura M., Yokomizo A., Tanaka Y., et al. Carbonic Anhydrase I as a New Plasma Biomarker for Prostate Cancer. ISRN Oncology . 2012;2012:1–10. doi: 10.5402/2012/768190. PubMed DOI PMC
Wang D.-B., Lu X.-K., Zhang X., Li Z.-G., Li C.-X. Carbonic Anhydrase 1 Is a Promising Biomarker for Early Detection of Non-Small Cell Lung Cancer. Tumor Biology . 2016;37(1):553–559. doi: 10.1007/s13277-015-3834-z. PubMed DOI
Kuo W. H., Chiang W. L., Yang S. F., et al. The Differential Expression of Cytosolic Carbonic Anhydrase in Human Hepatocellular Carcinoma. Life Sciences . 2003;73(17):2211–2223. doi: 10.1016/S0024-3205(03)00597-6. PubMed DOI
Mori M., Staniunas R. J., Barnard G. F., Jessup J. M., Steele G. D., Jr., Chen L. B. The Significance of Carbonic Anhydrase Expression in Human Colorectal Cancer. Gastroenterology . 1993;105(3):820–826. doi: 10.1016/0016-5085(93)90900-W. PubMed DOI
Frankel S. R., Walloch J., Hirata R. K., Bondurant M. C., Villanueva R., Weil S. C. Carbonic Anhydrase Is Aberrantly and Constitutively Expressed in Both Human and Murine Erythroleukemia Cells. Proceedings of the National Academy of Sciences . 1985;82(15):5175–5179. doi: 10.1073/pnas.82.15.5175. PubMed DOI PMC
Tanaka H., Tsukamoto T., Mizoshita T., et al. Expression of Small Intestinal and Colonic Phenotypes in Complete Intestinal Metaplasia of the Human Stomach. Virchows Archiv . 2005;447(5):806–815. doi: 10.1007/s00428-005-0040-1. PubMed DOI
Yoshihara T., Kadota Y., Yoshimura Y., et al. Proteomic Alteration in Gastic Adenocarcinomas From Japanese Patients. Molecular Cancer . 2006;5 doi: 10.1186/1476-4598-5-75.75 PubMed DOI PMC
Botrè F., Botrè C., Podestà E., Podda M., Invernizzi P. Effect of Anti-Carbonic Anhydrase Antibodies on Carbonic Anhydrases I and II. Clinical Chemistry . 2003;49(7):1221–1223. doi: 10.1373/49.7.1221. PubMed DOI
Mentese A., Fidan E., Alver A., et al. Detection of Autoantibodies Against Carbonic Anhydrase I and II in the Plasma of Patients With Gastric Cancer. Central European Journal of Immunology . 2017;42(1):73–77. doi: 10.5114/ceji.2017.67320. PubMed DOI PMC
Lakota J., Lanz A., Dubrovcakova M., Jankovicova B., Gonzalez A., Stern M. Antibodies Against Carbonic Anhydrase in Patients With Aplastic Anemia. Acta Haematologica . 2012;128(3):190–194. doi: 10.1159/000338826. PubMed DOI
Mentese A., Erkut N., Demir S., et al. Serum Carbonic Anhydrase I and II Autoantibodies in Patients With Chronic Lymphocytic Leukaemia. Central European Journal of Immunology . 2018;43(3):276–280. doi: 10.5114/ceji.2018.80046. PubMed DOI PMC
Lakota J., Skultety L., Dubrovcakova M., Altaner C. Presence of Serum Carbonic Anhydrase Autoantibodies in Patients Relapsed After Autologous Stem Cell Transplantation Indicates an Improved Prognosis. Neoplasma . 2008;55(6):488–92. PubMed
Minichová L., Škultéty Ľ., Lakota J. Autoimmune Phenomena and Spontaneous Tumour Regression. The Role of Carbonic Anhydrase I. Journal of Cellular and Molecular Medicine . 2021;25(11):5339–5340. doi: 10.1111/jcmm.16525. PubMed DOI PMC
Lakota J. Spontaneous Regression of Tumours. Possible Cross Reactivity of Autoantibodies against Carbonic Anhydrase I. Journal of Cellular and Molecular Medicine . 2023;27(22):3637–3640. doi: 10.1111/jcmm.17970. PubMed DOI PMC
Nissen C., Stern M. Acquired Immune Mediated Aplastic Anemia: Is It Antineoplastic? Autoimmunity Reviews . 2009;9(1):11–16. doi: 10.1016/j.autrev.2009.02.032. PubMed DOI
Skultety L., Jankovicova B., Svobodova Z., et al. Identification of Carbonic Anhydrase I Immunodominant Epitopes Recognized by Specific Autoantibodies Which Indicate an Improved Prognosis in Patients With Malignancy after Autologous Stem Cell Transplantation. Journal of Proteome Research . 2010;9(10):5171–5179. doi: 10.1021/pr1004778. PubMed DOI
Jankovicova B., Skultety L., Dubrovcakova M., Stern M., Bilkova Z., Lakota J. Overlap of Epitopes Recognized by Anti-Carbonic Anhydrase I IgG in Patients With Malignancy-Related Aplastic Anemia-Like Syndrome and in Patients With Aplastic Anemia. Immunology Letters . 2013;153(1-2):47–49. doi: 10.1016/j.imlet.2013.07.006. PubMed DOI
Colombo R., Pinelli A. Determination of the Dissociation Constant of Carbonic Anhydrase Inhibitors: A Computerized Kinetic Method Based on Esterase Activity Assay. Journal of Pharmacological Methods . 1981;6(3):177–191. doi: 10.1016/0160-5402(81)90107-8. PubMed DOI
Svobodova Z. Dot-ELISA Affinity Test: An Easy, Low-Cost Method to Estimate Binding Activity of Monoclonal Antibodies. Journal of Analytical & Bioanalytical Techniques . 2013;4(3) doi: 10.4172/2155-9872.1000168. DOI
Staros J. V. N-Hydroxysulfosuccinimide Active Esters: Bis(N-Hydroxysulfosuccinimide) Esters of Two Dicarboxylic Acids Are Hydrophilic, Membrane-Impermeant, Protein Cross-Linkers. Biochemistry . 1982;21(17):3950–3955. doi: 10.1021/bi00260a008. PubMed DOI
Jankovicova B., Rosnerova S., Slovakova M., et al. Epitope Mapping of Allergen Ovalbumin Using Biofunctionalized Magnetic Beads Packed in Microfluidic Channels. Journal of Chromatography A . 2008;1206(1):64–71. doi: 10.1016/j.chroma.2008.07.062. PubMed DOI
Plumb R. S., Johnson K. A., Rainville P., et al. UPLC/MSE; a New Approach for Generating Molecular Fragment Information for Biomarker Structure Elucidation. Rapid Communications in Mass Spectrometry . 2006;20(14):2234–2234. doi: 10.1002/rcm.2602. PubMed DOI
Supuran C. T., Scozzafava A., Casini A. Carbonic Anhydrase Inhibitors. Medicinal Research Reviews . 2003;23(2):146–189. doi: 10.1002/med.10025. PubMed DOI
Tsikas D. Acetazolamide and Human Carbonic Anhydrases: Retrospect, Review and Discussion of an Intimate Relationship. Journal of Enzyme Inhibition and Medicinal Chemistry . 2024;39(1) doi: 10.1080/14756366.2023.2291336.2291336 PubMed DOI PMC
Hnasko R. M., Stanker L. H. Hybridoma Technology. ELISA . 2015;1318:15–28. doi: 10.1007/978-1-4939-2742-5_2. PubMed DOI
Mitra S., Tomar P. C. Hybridoma Technology; Advancements, Clinical Significance, and Future Aspects. Journal of Genetic Engineering and Biotechnology . 2021;19(1) doi: 10.1186/s43141-021-00264-6.159 PubMed DOI PMC
Gondi G., Mysliwietz J., Hulikova A., et al. Antitumor Efficacy of a Monoclonal Antibody That Inhibits the Activity of Cancer-Associated Carbonic Anhydrase XII. Cancer Research . 2013;73(21):6494–6503. doi: 10.1158/0008-5472.CAN-13-1110. PubMed DOI
Stravinskiene D., Sliziene A., Baranauskiene L., Petrikaite V., Zvirbliene A. Inhibitory Monoclonal Antibodies and Their Recombinant Derivatives Targeting Surface-Exposed Carbonic Anhydrase XII on Cancer Cells. International Journal of Molecular Sciences . 2020;21(24) doi: 10.3390/ijms21249411.9411 PubMed DOI PMC
Supuran C. T., Scozzafava A. Carbonic Anhydrase Inhibitors and Their Therapeutic Potential. Expert Opinion on Therapeutic Patents . 2000;10(5):575–600. doi: 10.1517/13543776.10.5.575. DOI
Sun Z., Fu Y.-X., Peng H. Targeting Tumor Cells With Antibodies Enhances Anti-Tumor Immunity. Biophysics Reports . 2018;4(5):243–253. doi: 10.1007/s41048-018-0070-2. PubMed DOI PMC
Attarwala H. Role of Antibodies in Cancer Targeting. Journal of Natural Science, Biology and Medicine . 2010;1(1) doi: 10.4103/0976-9668.71675.53 PubMed DOI PMC
Neves H., Kwok H. F. Recent Advances in the Field of Anti-Cancer Immunotherapy. BBA Clinical . 2015;3:280–288. doi: 10.1016/j.bbacli.2015.04.001. PubMed DOI PMC
Mazor R. D., Nathan N., Gilboa A., et al. Tumor-Reactive Antibodies Evolve From Non-Binding and Autoreactive Precursors. Cell . 2022;185(7):1208–1222.e21. doi: 10.1016/j.cell.2022.02.012. PubMed DOI
Lakota J., Vulic R., Dubrovcakova M., Tyciakova S. Sera of Patients With Spontaneous Tumour Regression and Elevated Anti-CA I Autoantibodies Change the Gene Expression of ECM Proteins. Journal of Cellular and Molecular Medicine . 2017;21(3):543–551. doi: 10.1111/jcmm.13000. PubMed DOI PMC
Vulic R., Tyciakova S., Dubrovcakova M., Skultety L., Lakota J. Silencing of CA1 mRNA in Tumour Cells Does not Change the Gene Expression of the Extracellular Matrix Proteins. Journal of Cellular and Molecular Medicine . 2018;22(1):695–699. doi: 10.1111/jcmm.13315. PubMed DOI PMC
Adamus G., Karren L. Autoimmunity Against Carbonic Anhydrase II Affects Retinal Cell Functions in Autoimmune Retinopathy. Journal of Autoimmunity . 2009;32(2):133–139. doi: 10.1016/j.jaut.2009.02.001. PubMed DOI PMC
Salman T. Spontaneous Tumor Regression. Journal of Oncological Science . 2016;2(1):1–4. doi: 10.1016/j.jons.2016.04.008. DOI
Papac R. J. Spontaneous Regression of Cancer: Possible Mechanisms. In Vivo . 1998;12(6):571–578. Vivo. PubMed
Jessy T. Immunity over Inability: The Spontaneous Regression of Cancer. Journal of Natural Science, Biology and Medicine . 2011;2(1):p. 43. doi: 10.4103/0976-9668.82318. PubMed DOI PMC
Challis G. B., Stam H. J. The Spontaneous Regression of Cancer: A review of cases from 1900 to 1987. Acta Oncologica . 1990;29(5):545–550. doi: 10.3109/02841869009090048. PubMed DOI
Udupa K., Philip A., Rajendranath R., Sagar T., Majhi U. Spontaneous Regression of Primary Progressive Hodgkin’s Lymphoma in a Pediatric Patient: A Case Report and Review of Literature. Hematology/Oncology and Stem Cell Therapy . 2013;6(3-4):112–116. doi: 10.1016/j.hemonc.2013.06.004. PubMed DOI