Complex immunohistochemical and molecular study on 5 cases of ovarian juvenile granulosa cell tumors reveals a consistent alteration in the PI3K/AKT/mTOR signaling pathway

. 2025 Jan 08 ; 20 (1) : 3. [epub] 20250108

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39773640
Odkazy

PubMed 39773640
PubMed Central PMC11707838
DOI 10.1186/s13000-025-01599-1
PII: 10.1186/s13000-025-01599-1
Knihovny.cz E-zdroje

BACKGROUND: Juvenile granulosa cell tumor (JGCT) of the ovary is a rare tumor with distinct clinicopathological and hormonal features primarily affecting young women and children. We conducted a complex clinicopathological, immunohistochemical, and molecular analysis of five cases of JGCT. METHODS: The immunohistochemical examination was performed with 32 markers, including markers that have not been previously investigated. Moreover, DNA next-generation sequencing (NGS) and PTEN methylation analysis was performed. RESULT: We found the expression of calretinin, inhibin A, SF1, FOXL2, CD99, CKAE1/3, ER, PR, AR in all cases. WT1 was expressed in one case. Conversely, the expression of p16, OCT3/4, SALL4, GATA3, Napsin A, SATB2, MUC4, TTF1, and CAIX was completely negative. All tumors showed the wild-type pattern of p53 expression. Regarding predictive markers, all tumors were HER2 negative and did not express PD-L1. Mismatch repair proteins (MMR) showed no loss or restriction of expression, similarly to ARID1A, DPC4, BRG1, and INI1. The molecular analysis revealed AKT1 internal tandem duplication in two tumors. Two other cases exhibited mutations in TERT and EP400 and both developed recurrence. All AKT1-wild type tumors exhibited immunohistochemical loss of PTEN expression. However, no mutations, deletions (as assessed by CNV analysis), or promoter hypermethylation in the PTEN gene were detected. CONCLUSION: The results of our study further support the hypothesis that the pathogenesis of JGCT may be driven by activation of the PIK3/AKT/mTOR pathway. These findings could potentially have future therapeutic implications, as treatment strategies targeting the PTEN/mTOR pathways are currently under investigation.

Zobrazit více v PubMed

Schweppe KW, Beller FK. Clinical data of granulosa cell tumors. J Cancer Res Clin Oncol. 1982;104(1–2):161–9. PubMed

Babarović E, Franin I, Klarić M, et al. Adult granulosa cell tumors of the ovary: a retrospective study of 36 FIGO stage I cases with emphasis on prognostic pathohistological features. Anal Cell Pathol (Amst). 2018;2018:9148124. PubMed PMC

Young RH, Dickersin GR, Scully RE. Juvenile granulosa cell tumor of the ovary. A clinicopathological analysis of 125 cases. Am J Surg Pathol. 1984;8(8):575–96. PubMed

Bouffet E, Basset T, Chetail N, et al. Juvenile granulosa cell tumor of the ovary in infants: a clinicopathologic study of three cases and review of the literature. J Pediatr Surg. 1997;32(5):762–5. PubMed

Kalfa N, Méduri G, Philibert P, et al. Unusual virilization in girls with juvenile granulosa cell tumors of the ovary is related to intratumoral aromatase deficiency. Horm Res Paediatr. 2010;74(2):83–91. PubMed

Rod J, Renard C, Lacreuse I, Ravasse P, Becmeur F. Hypercalcemia in a child with juvenile granulosa cell tumor of ovary: report of an unusual paraneoplastic syndrome and review of the literature. Gynecol Oncol Case Rep. 2013;5:10–2. PubMed PMC

Iqbal A, Novodvorsky P, Lubina-Solomon A, Kew FM, Webster J. Juvenile granulosa cell tumour of the ovary presenting with hyperprolactinaemic amenorrhoea and galactorrhoea. Endocrinol Diabetes Metab Case Rep. 2016;2016:160006. PubMed PMC

Calaminus G, Wessalowski R, Harms D, Göbel U. Juvenile granulosa cell tumors of the ovary in children and adolescents: results from 33 patients registered in a prospective cooperative study. Gynecol Oncol. 1997;65(3):447–52. PubMed

Ndhlovu E, Liu L, Dai J, Dong X, Zhang W, Chen B. Retrospective analysis of clinicopathological characteristics of 19 ovarian juvenile granulosa cell tumor cases. J Obstet Gynaecol Res. 2021;47(7):2492–9. PubMed

Powell JL, Connor GP, Henderson GS. Management of recurrent juvenile granulosa cell tumor of the ovary. Gynecol Oncol. 2001;81(1):113–6. PubMed

Bessière L, Todeschini AL, Auguste A, et al. A hot-spot of In-frame duplications activates the oncoprotein AKT1 in Juvenile granulosa cell tumors. EBioMedicine. 2015;2(5):421–31. PubMed PMC

Heravi-Moussavi A, Anglesio MS, Cheng SW, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 2012;366(3):234–42. PubMed

Shah SP, Köbel M, Senz J, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360(26):2719–29. PubMed

Goulvent T, Ray-Coquard I, Borel S, et al. DICER1 and FOXL2 mutations in ovarian sex cord-stromal tumours: a GINECO Group study. Histopathology. 2016;68(2):279–85. PubMed

Kalfa N, Ecochard A, Patte C, et al. Activating mutations of the stimulatory g protein in juvenile ovarian granulosa cell tumors: a new prognostic factor? J Clin Endocrinol Metab. 2006;91(5):1842–7. PubMed

Tanaka Y, Sasaki Y, Nishihira H, Izawa T, Nishi T. Ovarian juvenile granulosa cell tumor associated with Maffucci’s syndrome. Am J Clin Pathol. 1992;97(4):523–7. PubMed

Burgetova A, Matejovsky Z, Zikan M, et al. The association of enchondromatosis with malignant transformed chondrosarcoma and ovarian juvenile granulosa cell tumor (Ollier disease). Taiwan J Obstet Gynecol. 2017;56(2):253–7. PubMed

Guo H, Keefe KA, Kohler MF, Chan JK. Juvenile granulosa cell tumor of the ovary associated with tuberous sclerosis. Gynecol Oncol. 2006;102(1):118–20. PubMed

Schultz KA, Pacheco MC, Yang J, et al. Ovarian sex cord-stromal tumors, pleuropulmonary blastoma and DICER1 mutations: a report from the International Pleuropulmonary Blastoma Registry. Gynecol Oncol. 2011;122(2):246–50. PubMed PMC

Plon SE, Pirics ML, Nuchtern J, et al. Multiple tumors in a child with germ-line mutations in TP53 and PTEN. N Engl J Med. 2008;359(5):537–9. PubMed

Němejcová K, Šafanda A, Kendall Bártů M, et al. An extensive immunohistochemical analysis of 290 ovarian adult granulosa cell tumors with 29 markers. Virchows Arch. 2024;485(3):427–37. PubMed

McCluggage WG, Soslow RA, Gilks CB. Patterns of p53 immunoreactivity in endometrial carcinomas: ‘all or nothing’ staining is of importance. Histopathology. 2011;59(4):786–8. PubMed

Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol. 2018;36(20):2105–22. PubMed

Dundr P, Bártů M, Bosse T, et al. Primary mucinous tumors of the ovary: an interobserver reproducibility and detailed molecular study reveals significant overlap between diagnostic categories. Mod Pathol. 2023;36(1):100040. PubMed

García JM, Silva J, Peña C, et al. Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosomes Cancer. 2004;41(2):117–24. PubMed

Zhang R, Zhao R, Shen Q. Giant juvenile granulosa cell tumor torsion: a case report. Am J Transl Res. 2022;14(9):6823–7. PubMed PMC

Ye Y, Lv C, Xu S, et al. Juvenile granulosa cell tumors of the ovary. Am J Clin Pathol. 2020;154(5):635–44. PubMed

Schneider DT, Jänig U, Calaminus G, Göbel U, Harms D. Ovarian sex cord-stromal tumors–a clinicopathological study of 72 cases from the Kiel Pediatric Tumor Registry. Virchows Arch. 2003;443(4):549–60. PubMed

Wang Y, Wang W, Xu C, et al. Childhood ovarian juvenile granulosa cell tumor: a retrospective study with 3 cases including clinical features, pathologic results, and therapies. J Pediatr Hematol Oncol. 2011;33(3):241–5. PubMed

Kondi-Pafiti A, Grapsa D, Kairi-Vassilatou E, et al. Granulosa cell tumors of the ovary: a clinicopathologic and immunohistochemical study of 21 cases. Eur J Gynaecol Oncol. 2010;31(1):94–8. PubMed

Rishi M, Howard LN, Bratthauer GL, Tavassoli FA. Use of monoclonal antibody against human inhibin as a marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol. 1997;21(5):583–9. PubMed

Movahedi-Lankarani S, Kurman RJ. Calretinin, a more sensitive but less specific marker than alpha-inhibin for ovarian sex cord-stromal neoplasms: an immunohistochemical study of 215 cases. Am J Surg Pathol. 2002;26(11):1477–83. PubMed

Deavers MT, Malpica A, Liu J, Broaddus R, Silva EG. Ovarian sex cord-stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Mod Pathol. 2003;16(6):584–90. PubMed

Costa MJ, Ames PF, Walls J, Roth LM. Inhibin immunohistochemistry applied to ovarian neoplasms: a novel, effective, diagnostic tool. Hum Pathol. 1997;28(11):1247–54. PubMed

Kommoss F, Oliva E, Bhan AK, Young RH, Scully RE. Inhibin expression in ovarian tumors and tumor-like lesions: an immunohistochemical study. Mod Pathol. 1998;11(7):656–64. PubMed

McCluggage WG, Maxwell P. Immunohistochemical staining for calretinin is useful in the diagnosis of ovarian sex cord-stromal tumours. Histopathology. 2001;38(5):403–8. PubMed

Bai S, Wei S, Ziober A, Yao Y, Bing Z. SALL4 and SF-1 are sensitive and specific markers for distinguishing granulosa cell tumors from yolk sac tumors. Int J Surg Pathol. 2013;21(2):121–5. PubMed

D’Angelo E, Mozos A, Nakayama D, et al. Prognostic significance of FOXL2 mutation and mRNA expression in adult and juvenile granulosa cell tumors of the ovary. Mod Pathol. 2011;24(10):1360–7. PubMed

Kalfa N, Philibert P, Patte C, et al. Extinction of FOXL2 expression in aggressive ovarian granulosa cell tumors in children. Fertil Steril. 2007;87(4):896–901. PubMed

Onder S, Hurdogan O, Bayram A, Yilmaz I, Sozen H, Yavuz E. The role of FOXL2, SOX9, and β-catenin expression and DICER1 mutation in differentiating sex cord tumor with annular tubules from other sex cord tumors of the ovary. Virchows Arch. 2021;479(2):317–24. PubMed

Vougiouklakis T, Zhu K, Vasudevaraja V, et al. Integrated analysis of ovarian juvenile granulosa cell tumors reveals distinct epigenetic signatures and recurrent TERT rearrangements. Clin Cancer Res. 2022;28(8):1724–33. PubMed

Gordon MD, Corless C, Renshaw AA, Beckstead J. CD99, keratin, and vimentin staining of sex cord-stromal tumors, normal ovary, and testis. Mod Pathol. 1998;11(8):769–73. PubMed

Jarboe EA, Hirschowitz SL, Geiersbach KB, Wallander ML, Tripp SR, Layfield LJ. Juvenile granulosa cell tumors: immunoreactivity for CD99 and Fli-1 and EWSR1 translocation status: a study of 11 cases. Int J Gynecol Pathol. 2014;33(1):11–5. PubMed

Costa MJ, DeRose PB, Roth LM, Brescia RJ, Zaloudek CJ, Cohen C. Immunohistochemical phenotype of ovarian granulosa cell tumors: absence of epithelial membrane antigen has diagnostic value. Hum Pathol. 1994;25(1):60–6. PubMed

Mayr D, Kaltz-Wittmer C, Arbogast S, Amann G, Aust DE, Diebold J. Characteristic pattern of genetic aberrations in ovarian granulosa cell tumors. Mod Pathol. 2002;15(9):951–7. PubMed

Staibano S, Franco R, Mezza E, et al. Loss of oestrogen receptor beta, high PCNA and p53 expression and aneuploidy as markers of worse prognosis in ovarian granulosa cell tumours. Histopathology. 2003;43(3):254–62. PubMed

Dowsett M, Nielsen TO, A’Hern R, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656–64. PubMed PMC

Nakatsuka S, Oji Y, Horiuchi T, et al. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol. 2006;19(6):804–14. PubMed

Wens FSPL, Hulsker CCC, Fiocco M, et al. Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT): patient characteristics, treatment, and outcome-a systematic review. Cancers (Basel). 2023;15(15):3794. PubMed PMC

Ramos P, Karnezis AN, Craig DW, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet. 2014;46(5):427–9. PubMed PMC

Jelinic P, Mueller JJ, Olvera N, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46(5):424–6. PubMed PMC

Kupryjańczyk J, Dansonka-Mieszkowska A, Moes-Sosnowska J, et al. Ovarian small cell carcinoma of hypercalcemic type - evidence of germline origin and SMARCA4 gene inactivation. A pilot study. Pol J Pathol. 2013;64(4):238–46. PubMed

Witkowski L, Carrot-Zhang J, Albrecht S, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet. 2014;46(5):438–43. PubMed

Sakr S, Abdulfatah E, Thomas S, et al. Granulosa cell tumors: novel predictors of recurrence in early-stage patients. Int J Gynecol Pathol. 2017;36(3):240–52. PubMed PMC

Leibl S, Bodo K, Gogg-Kammerer M, et al. Ovarian granulosa cell tumors frequently express EGFR (Her-1), Her-3, and Her-4: an immunohistochemical study. Gynecol Oncol. 2006;101(1):18–23. PubMed

Liu Z, Ren YA, Pangas SA, et al. FOXO1/3 and PTEN Depletion in granulosa cells promotes ovarian granulosa cell tumor development. Mol Endocrinol. 2015;29(7):1006–24. PubMed PMC

Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: it’s all about diversity. Semin Cancer Biol. 2019;59:66–79. PubMed

Laguë MN, Paquet M, Fan HY, et al. Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis. 2008;29(11):2062–72. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...