Differences in phenological term changes in field crops and wild plants - do they have the same response to climate change in Central Europe?

. 2025 Mar ; 69 (3) : 659-670. [epub] 20250107

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39775886

Grantová podpora
CZ.02.01.01/00/22_008/0004635 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39775886
PubMed Central PMC11860992
DOI 10.1007/s00484-024-02846-8
PII: 10.1007/s00484-024-02846-8
Knihovny.cz E-zdroje

Phenological shifts in wild-growing plants and wild animal phenophases are well documented at many European sites. Less is known about phenological shifts in agricultural plants and how wild ecosystem phenology interacts with crop phenology. Here, we present long-term phenological observations (1961-2021) from the Czech Republic for wild plants and agricultural crops and how the timing of phenophases differs from each other. The phenology of wild-growing plants was observed at various experimental sites with no agriculture or forestry management within the Czech Hydrometeorological Institute observations. The phenological data of the crops were collected from small experimental plots at the Central Institute for Supervising and Testing in Agriculture. The data clearly show a tendency to shift to earlier times during the observation period. The data also show some asynchrony in phenological shifts. Compared with wild plants, agricultural crops showed more expressive shifts to the start of the season. Phenological trends for crop plants (Triticum aestivum) showed accelerated shifts of 4.1 and 5.1 days per decade at low and middle altitudes, respectively; on the other hand, the average phenological shift for wild plants showed smaller shifts of 2.7 and 2.9 days per decade at low and middle altitudes, respectively. The phenophase ´heading´ of T. aestivum showed the highest correlation with maximum temperatures (r = 0.9), followed by wild species (with r = 0.7-0.8) and two remaining phenophases of T. aestivum jointing and ripening (with r = 0.7 and 0.6). To better understand the impacts of climate on phenological changes, it is optimal to evaluate natural and unaffected plant responses in wild species since the phenology of field crops is most probably influenced not only by climate but also by agricultural management.

Zobrazit více v PubMed

Ahas R, Jaagus J, Aasa A (2000) The phonological calendar of Estonia and its correlation with mean air temperature. Int J Biometeorol 44:159–166 PubMed

Anonymous (2009) Methodical instructions number 10 for phenological stations–wild plants. Prague. CHMI

Bartošová L, Dížkova P, Bauerová J, Hájková L, Fischer M, Balek J, Bláhová M, Možný M, Zahradnícek P, Štepánek P et al (2022) Phenological response of flood plain forest ecosystem species to climate change during 1961–2021. Atmosphere 13:978. 10.3390/atmos13060978

Beard KH, Kelsey KC, Leffler AJ, Welker JM (2019) The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol Evol 34:885–888. 10.1016/j.tree.2019.07.019 PubMed

Beebee TJC (1995) Amphibian breeding and climate. Nature 374:219–220

Bivand R, Keitt T, Rowlingson B (2023) rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://rgdal.r-forge.r-project.org. Accessed 30 Dec 2024

Bock A, Sparks TH, Estrella N, Menzel A (2013) Changes in the timing of hay cutting in Germany do not keep pace with climate warming. Glob Change Biol 19(10):3123–3132. 10.1111/gcb.12280 PubMed

Both CH, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser M (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83 PubMed

Brazdil R, Chroma K, Dobrovolny P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 2:223–242

Büntgen U, Piermattei A, Krusic PJ, Esper J, Sparks T, Crivellaro A (2022) Plants in the UK flower a month earlier under recent warming. Proc R Soc B 289:20212456 PubMed PMC

Chmielewski FM, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agri Met 121:69–78

Chmura DJ, Rozkowski R (2002) Variability of beech provenances in spring and autumn phenology. Silvae Genet 51:123–127

Coufal L, Houška V, Reitschlager JD, Valter J, Vráblík T (2004) Phenological atlas, CHMI, 1st edn

Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526–526

Dížková P, Bartošová L, Bláhová M, Semerádová D, Poděbradská M, Fischer M, Wardlow BD, Hayes M, Balek J, Hájková L, Žalud Z, Trnka M (2024) Changes in the spatiotemporal variability in the growing season in Europe. Agric For Meteorol. AGRFORMET-D-24-01522. Under revisions

Estrella N, Sparks T, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Change Biol 13(8):1737–1747. 10.1111/j.1365-2486.2007.01374.x

Estrella N, Sparks TH, Menzel A (2009) Effects of temperature, phase type and timing, location, and human density on plant phonological responses in Europe. Clim Res 39:235–248

Gauzere S, Delzonb H, Davic M, Bonhommed I, de Garcia Cortazar-Ataurie I, Chuinea I (2017) Integrating interactive effects of chilling and photoperiod in phenological process-based models. A case study with two European tree species: fagus sylvatica and Quercus petraea. Agri Met 244–245:9–20

Grogan SM, Brown-Guedira G, Haley SD, McMaster GS, Reid SD, Smith J, Byrne PF (2016) Allelic variation in developmental genes and effects on winter wheat heading date in the U.S. great plains. PLoS ONE 11(4):e0152852. 10.1371/journal.pone.0152852 PubMed PMC

Hájková L, Možný M, Oušková V, Bartošová L, Dížková P, Žalud Z (2021) Meteorological variables that affect the beginning of flowering of the winter oilseed rape in the Czech Republic. Atmosphere 12:1444

Hijmans R (2024) raster: geographic data analysis and modeling. R package version 3.6–30. https://rspatial.org/raster. Accessed 30 Dec 2024

Hu Q, Weiss A, Feng S, Bainziger PS (2005) Earlier winter wheat heading dates and warmer spring in the U.S. Great Plains. Agric Meteorol 135:284–290

Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368 PubMed

McMaster GS, White JW, Hunt LA, Jamieson PD, Dhillon SS, Ortiz-Monasterio JI (2008) Simulating the influence of vernalization, photoperiod and optimum temperature for wheat development rates. Ann Bot 102:561–566 PubMed PMC

Memmott J, Craze PG, Wase NMr, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10(8):710–717. 10.1111/j.1461-0248.2007.01061.x PubMed

Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81 PubMed

Menzel A, Estrella N, PJ E (2001) Plant phenological changes. In: Walther GR, CA B (eds) Fingerprints of climate change —adapted behaviour and shifting species ranges. New York: Kluwer Academic/Plenum Publishers. pp 123–137

Menzel A, von Vopelius J, Estrella N, Schleip C, Dose V (2006) Farmers annual activities are not tracking the speed of climate change. Clim Res 32:201–207

Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N (2020) Climate change fingerprints in recent European plant phenology. Glob Chang Biol 26:2599–2612. 10.1111/gcb.1500 PubMed

Motzo R, Giunta F (2007) The effect of breeding on the phenology of Italian durum wheats: from landraces to modern cultivars. Eur J Agron 26:462–470

Oteros J, García-Mozo H, Botey R, Mestre A, Galán C (2015) Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012). Clim Change 130:545–558

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42 PubMed

Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019) Plant phenology and global climate change: current progresses and challenges. Glob Chang Biol 25:1922–1940. 10.1111/gcb.14619 PubMed

Renner SS, Zohner CM (2018) Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst 49:165–182

Rezaei EE, Siebert S, Ewert F (2017) Climate and management interaction cause diverse crop phenology trends. Agri Meteorol 233:55–70

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60 PubMed

Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P, Hanson CE (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ (eds) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK, pp 79–131

Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Chang Biol 6:407–416

Schnelle F (1955) Pflanzen-Phänologie. Leipzig, Germany: Akademische Verlagsgesell-schaft

Schwartz MD (2003) Phenology: an integrative environmental science, vol 346. Kluwer, Dordrecht, The Netherlands

Siebert S, Ewert F (2012) Spatio-temporal patterns of phenological development in Germany in relation to temperature and day length. Agri Meteorol 152:44–57

Squintu AA, Schrier G, Štěpánek P, Zahradníček P, Klein Tank A (2020) Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset. Arch Meteorol Geophys Bioclimatol Ser B 140:285–301

Stepanek P (2008) An clim—software for time series analysis. Department of geography, faculty of natural sciences, MU, Brno, 1.47 MB. Available online: https://www.climahom.eu/AnClim.html. Accessed 30 Dec 2024

Štěpánek P, Zahradníček P, Farda A (2013) Experiences with data quality control and homogenization of daily records of various meteorological elements in the Czech Republic in the period 1961–2010. Idojárás 2013(117):123–141

Thackeray S, Henrys P, Hemming D et al (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature 535:241–245. 10.1038/nature18608 PubMed

Trnka M, Olesen JE, Kersebaum KC, Skjelvåg AO, Eitzinger J et al (2011) Agroclimatic conditions in Europe under climate change. Glob Chang Biol 17:2298–2318. 10.1111/j.1365-2486.2011.02396.x

Visser M, Both CH, Lambrechts M (2004) Global climate change leads to mistimed avian reproduction. Advan Ecol Res 35:89–109

Vitasse Y, Schneider L, Rixen C, Christen D, Rebetez M (2018) Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agri Met 248:60–69

Xiao D, Tao F, Liu Y, Shi W, Wang M, Liu F, Zhang S, Zhu Z (2013) Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int J Biometeorol 57:275–285. 10.1007/s00484-012-0552-8 PubMed

Zahradníček P, Brázdil R, Řehoř J, Trnka M, Bartošová L, Rožnovský J (2024) Past and present risk of spring frosts for fruit trees in the Czech Republic. Theor Appl Climatol 155:965–984

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...