• This record comes from PubMed

A collaborative network analysis for the interpretation of transcriptomics data in Huntington's disease

. 2025 Jan 09 ; 15 (1) : 1412. [epub] 20250109

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020

Links

PubMed 39789061
PubMed Central PMC11718016
DOI 10.1038/s41598-025-85580-4
PII: 10.1038/s41598-025-85580-4
Knihovny.cz E-resources

Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research. A way to overcome this is to integrate experimental rare disease data with prior knowledge using network-based methods. Taking this one step further, we hypothesized that combining and analyzing the results from multiple network-based methods could provide data-driven hypotheses of pathogenic mechanisms from multiple perspectives.We analyzed a Huntington's disease transcriptomics dataset using six network-based methods in a collaborative way. These methods either inherently reported enriched annotation terms or their results were fed into enrichment analyses. The resulting significantly enriched Reactome pathways were then summarized using the ontological hierarchy which allowed the integration and interpretation of outputs from multiple methods. Among the resulting enriched pathways, there are pathways that have been shown previously to be involved in Huntington's disease and pathways whose direct contribution to disease pathogenesis remains unclear and requires further investigation.In summary, our study shows that collaborative network analysis approaches are well-suited to study rare diseases, as they provide hypotheses for pathogenic mechanisms from multiple perspectives. Applying different methods to the same case study can uncover different disease mechanisms that would not be apparent with the application of a single method.

See more in PubMed

European Commission research and innovation on rare diseases. (2023). https://ec.europa.eu/info/research-and-innovation/research-area/health-research-and-innovation/rare-diseases_en

Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur. J. Hum. Genet.28, 165–173 (2020). PubMed PMC

Gahl, W. A. et al. Essential list of medicinal products for rare diseases: Recommendations from the IRDiRC Rare Disease Treatment Access Working Group. Orphanet J. Rare Dis.16, 308 (2021). PubMed PMC

Tambuyzer, E. et al. Therapies for rare diseases: Therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 19, 93–111 (2020). PubMed

Warde-Farley, D. et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res.38, W214–220 (2010). PubMed PMC

Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res.47, D607–D613 (2019). PubMed PMC

Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res.13, 2498–2504 (2003). PubMed PMC

Kutmon, M. et al. PathVisio 3: An extendable pathway analysis toolbox. PLoS Comput. Biol.11, e1004085 (2015). PubMed PMC

Martens, M. et al. WikiPathways: Connecting communities. Nucleic Acids Res.49, D613–D621 (2021). PubMed PMC

Glaab, E., Baudot, A., Krasnogor, N., Schneider, R. & Valencia, A. EnrichNet: network-based gene set enrichment analysis. Bioinformatics28, i451–i457 (2012). PubMed PMC

Mitra, K., Carvunis, A. R., Ramesh, S. K. & Ideker, T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet.14, 719–732 (2013). PubMed PMC

Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A. F. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics18 (Suppl 1), S233–240 (2002). PubMed

Novoa-Del-Toro, E. M. et al. A multi-objective genetic algorithm to find active modules in multiplex biological networks. PLoS Comput. Biol.17, e1009263 (2021). PubMed PMC

Ulgen, E., Ozisik, O. & Sezerman, O. U. pathfindR: An R Package for Comprehensive Identification of Enriched pathways in Omics Data through active subnetworks. Front. Genet.10, 858 (2019). PubMed PMC

Levi, H., Elkon, R. & Shamir, R. DOMINO: A network-based active module identification algorithm with reduced rate of false calls. Mol. Syst. Biol.17, e9593 (2021). PubMed PMC

Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol.4, Article17 (2005). PubMed

Morselli Gysi, D., Voigt, A., Fragoso, T. M., Almaas, E. & Nowick, K. wTO: An R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinform.19, 392 (2018). PubMed PMC

Ideker, T. & Krogan, N. J. Differential network biology. Mol. Syst. Biol.8, 565 (2012). PubMed PMC

Li, J., Li, Y. X. & Li, Y. Y. Differential regulatory analysis based on coexpression network in cancer research. Biomed. Res. Int. 4241293 (2016). (2016). PubMed PMC

Morselli Gysi, D. et al. Whole transcriptomic network analysis using co-expression Differential Network Analysis (CoDiNA). PLoS One. 15, e0240523 (2020). PubMed PMC

de Weerd, H. A. et al. MODifieR: An Ensemble R Package for Inference of Disease modules from Transcriptomics Networks. Bioinformatics36, 3918–3919 (2020). PubMed

Labadorf, A. et al. RNA sequence analysis of human Huntington Disease Brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One. 10, e0143563 (2015). PubMed PMC

Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Primers. 1, 15005 (2015). PubMed

MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell72, 971–983 (1993). PubMed

McColgan, P. & Tabrizi, S. J. Huntington’s disease: A clinical review. Eur. J. Neurol.25, 24–34 (2018). PubMed

Roos, R. A. C. Huntington’s disease: A clinical review. Orphanet J. Rare Dis.5, 40 (2010). PubMed PMC

Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res.50, D687–D692 (2022). PubMed PMC

Raudvere, U. et al. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res.47, W191–W198 (2019). PubMed PMC

Ozisik, O., Térézol, M. & Baudot, A. orsum: A Python package for filtering and comparing enrichment analyses using a simple principle. BMC Bioinform.23, 293 (2022). PubMed PMC

Ellrichmann, G., Reick, C., Saft, C. & Linker, R. A. The role of the immune system in Huntington’s disease. Clin. Dev. Immunol. 541259 (2013). (2013). PubMed PMC

Clark, L. F. & Kodadek, T. The Immune System and Neuroinflammation as potential sources of blood-based biomarkers for Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. ACS Chem. Neurosci.7, 520–527 (2016). PubMed

Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics33, 2938–2940 (2017). PubMed PMC

Kandasamy, M., Reilmann, R., Winkler, J., Bogdahn, U. & Aigner, L. Transforming Growth Factor-Beta Signaling in the Neural Stem Cell Niche: A Therapeutic Target for Huntington’s Disease. Neurol. Res. Int. 124256 (2011). (2011). PubMed PMC

Song, C., Perides, G. & Liu, Y. F. Expression of full-length polyglutamine-expanded huntingtin disrupts growth factor receptor signaling in rat pheochromocytoma (PC12) cells. J. Biol. Chem.277, 6703–6707 (2002). PubMed

Apostol, B. L. et al. Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum. Mol. Genet.15, 273–285 (2006). PubMed

Freitas, A. et al. Bioinformatic analysis of the human brain extracellular matrix proteome in neurodegenerative disorders. Eur. J. Neurosci.53, 4016–4033 (2021). PubMed

Crapser, J. D. et al. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington’s disease. Brain143, 266–288 (2020). PubMed PMC

Aykaç, A. & Şehirli, A. Ö. The role of the SLC Transporters Protein in the neurodegenerative disorders. Clin. Psychopharmacol. Neurosci.18, 174–187 (2020). PubMed PMC

Hodges, A. et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum. Mol. Genet.15, 965–977 (2006). PubMed

Li, X. et al. Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington’s disease. J. Neurosci.30, 4552–4561 (2010). PubMed PMC

Suzuki, M., Desmond, T. J., Albin, R. L. & Frey, K. A. Vesicular neurotransmitter transporters in Huntington’s disease: initial observations and comparison with traditional synaptic markers. Synapse41, 329–336 (2001). PubMed

Wu, J. et al. A Novel Huntington’s Disease Assessment platform to support Future Drug Discovery and Development. Int. J. Mol. Sci.23, 14763 (2022). PubMed PMC

Jankovic, J. & Clarence-Smith, K. Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders. Expert Rev. Neurother.11, 1509–1523 (2011). PubMed

Periayah, M. H., Halim, A. S. & Mat Saad, A. Z. Mechanism action of platelets and crucial blood coagulation pathways in Hemostasis. Int. J. Hematol. Oncol. Stem Cell. Res.11, 319–327 (2017). PubMed PMC

Denis, H. L. et al. Platelet abnormalities in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 90, 272–283 (2019). PubMed PMC

Hands, S. L., Mason, R., Sajjad, M. U., Giorgini, F. & Wyttenbach, A. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington’s disease. Biochem. Soc. Trans.38, 552–558 (2010). PubMed

Cornett, J. et al. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat. Genet.37, 198–204 (2005). PubMed

Grima, J. C. et al. Mutant huntingtin disrupts the Nuclear Pore Complex. Neuron94, 93–107e6 (2017). PubMed PMC

Coyne, A. N. & Rothstein, J. D. Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat. Rev. Neurol.18, 348–362 (2022). PubMed PMC

Spead, O., Zaepfel, B. L. & Rothstein, J. D. Nuclear Pore Dysfunction in Neurodegeneration. Neurotherapeutics19, 1050–1060 (2022). PubMed PMC

Lange, J. et al. Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington’s Disease PSC-Derived Striatal neurons. Front. Cell. Neurosci.15, 742763 (2021). PubMed PMC

Li, D., McIntosh, C. S., Mastaglia, F. L., Wilton, S. D. & Aung-Htut, M. T. Neurodegenerative diseases: A hotbed for splicing defects and the potential therapies. Transl Neurodegener. 10, 16 (2021). PubMed PMC

Nikom, D. & Zheng, S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat. Rev. Neurosci.24, 457–473 (2023). PubMed

Tano, V. et al. Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington’s disease. EBioMedicine94, 104720 (2023). PubMed PMC

Heinz, A., Nabariya, D. K. & Krauss, S. Huntingtin and its role in mechanisms of RNA-Mediated toxicity. Toxins (Basel). 13, 487 (2021). PubMed PMC

Schilling, J. et al. Deregulated splicing is a major mechanism of RNA-Induced toxicity in Huntington’s Disease. J. Mol. Biol.431, 1869–1877 (2019). PubMed

Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. U S A. 110, 2366–2370 (2013). PubMed PMC

Mason, M. A. et al. Silencing Srsf6 does not modulate incomplete splicing of the huntingtin gene in Huntington’s disease models. Sci. Rep.10, 14057 (2020). PubMed PMC

Teuling, E. et al. Modifiers of mutant huntingtin aggregation: functional conservation of C. Elegans-modifiers of polyglutamine aggregation. PLoS Curr.3, RRN1255 (2011). PubMed PMC

Szklarczyk, D. et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res.51, D638–D646 (2023). PubMed PMC

Pfalzer, A. C. et al. Alterations in metal homeostasis occur prior to canonical markers in Huntington disease. Sci. Rep.12, 10373 (2022). PubMed PMC

Scholefield, M., Unwin, R. D. & Cooper, G. J. S. Shared perturbations in the metallome and metabolome of Alzheimer’s, Parkinson’s, Huntington’s, and dementia with Lewy bodies: A systematic review. Ageing Res. Rev.63, 101152 (2020). PubMed

Pfalzer, A. C. et al. Huntington’s disease genotype suppresses global manganese-responsive processes in pre-manifest and manifest YAC128 mice. Metallomics12, 1118–1130 (2020). PubMed PMC

Sakuma, S. & D’Angelo, M. A. The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell. Dev. Biol.68, 72–84 (2017). PubMed PMC

Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC

Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform.9, 559 (2008). PubMed PMC

Abbassi-Daloii, T., Kan, H. E., Raz, V. & 't Hoen, P. A. C. Recommendations for the analysis of gene expression data to identify intrinsic differences between similar tissues. Genomics112, 3157–3165 (2020). PubMed

Kutmon, M., Ehrhart, F., Willighagen, E. L., Evelo, C. T. & Coort, S. L. CyTargetLinker app update: A flexible solution for network extension in Cytoscape. F1000Res. 7, ELIXIR-743 (2018). PubMed PMC

Oughtred, R. et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci.30, 187–200 (2021). PubMed PMC

Pio-Lopez, L., Valdeolivas, A., Tichit, L., Remy, É. & Baudot, A. MultiVERSE: A multiplex and multiplex-heterogeneous network embedding approach. Sci. Rep.11, 8794 (2021). PubMed PMC

Alonso-López, D. et al. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res.44, W529–535 (2016). PubMed PMC

Alonso-López, D. et al. APID database: Redefining protein-protein interaction experimental evidences and binary interactomes. Database (Oxford) baz005 (2019). (2019). PubMed PMC

Luck, K. et al. A reference map of the human binary protein interactome. Nature580, 402–408 (2020). PubMed PMC

Pratt, D. et al. NDEx 2.0: A clearinghouse for Research on Cancer pathways. Cancer Res.77, e58–e61 (2017). PubMed PMC

Huang, J. K. et al. Systematic evaluation of Molecular Networks for Discovery of Disease genes. Cell. Syst.6, 484–495e5 (2018). PubMed PMC

Drew, K. et al. Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Mol. Syst. Biol.13, 932 (2017). PubMed PMC

Giurgiu, M. et al. CORUM: The comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res.47, D559–D563 (2019). PubMed PMC

Türei, D. et al. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol.17, e9923 (2021). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...