A collaborative network analysis for the interpretation of transcriptomics data in Huntington's disease
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
PubMed
39789061
PubMed Central
PMC11718016
DOI
10.1038/s41598-025-85580-4
PII: 10.1038/s41598-025-85580-4
Knihovny.cz E-resources
- Keywords
- Collaborative analysis, Huntington’s disease, Network analysis, Rare disease,
- MeSH
- Gene Regulatory Networks MeSH
- Huntington Disease * genetics MeSH
- Humans MeSH
- Gene Expression Profiling * methods MeSH
- Transcriptome * MeSH
- Computational Biology methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research. A way to overcome this is to integrate experimental rare disease data with prior knowledge using network-based methods. Taking this one step further, we hypothesized that combining and analyzing the results from multiple network-based methods could provide data-driven hypotheses of pathogenic mechanisms from multiple perspectives.We analyzed a Huntington's disease transcriptomics dataset using six network-based methods in a collaborative way. These methods either inherently reported enriched annotation terms or their results were fed into enrichment analyses. The resulting significantly enriched Reactome pathways were then summarized using the ontological hierarchy which allowed the integration and interpretation of outputs from multiple methods. Among the resulting enriched pathways, there are pathways that have been shown previously to be involved in Huntington's disease and pathways whose direct contribution to disease pathogenesis remains unclear and requires further investigation.In summary, our study shows that collaborative network analysis approaches are well-suited to study rare diseases, as they provide hypotheses for pathogenic mechanisms from multiple perspectives. Applying different methods to the same case study can uncover different disease mechanisms that would not be apparent with the application of a single method.
Aix Marseille Univ INSERM MMG Marseille France
Barcelona Supercomputing Center Barcelona Spain
Department of Bioinformatics BiGCaT NUTRIM MHeNs Maastricht University Maastricht The Netherlands
Department of Human Genetics Leiden University Medical Center Leiden The Netherlands
Maastricht Centre for Systems Biology Maastricht University Maastricht The Netherlands
See more in PubMed
European Commission research and innovation on rare diseases. (2023). https://ec.europa.eu/info/research-and-innovation/research-area/health-research-and-innovation/rare-diseases_en
Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur. J. Hum. Genet.28, 165–173 (2020). PubMed PMC
Gahl, W. A. et al. Essential list of medicinal products for rare diseases: Recommendations from the IRDiRC Rare Disease Treatment Access Working Group. Orphanet J. Rare Dis.16, 308 (2021). PubMed PMC
Tambuyzer, E. et al. Therapies for rare diseases: Therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 19, 93–111 (2020). PubMed
Warde-Farley, D. et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res.38, W214–220 (2010). PubMed PMC
Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res.47, D607–D613 (2019). PubMed PMC
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res.13, 2498–2504 (2003). PubMed PMC
Kutmon, M. et al. PathVisio 3: An extendable pathway analysis toolbox. PLoS Comput. Biol.11, e1004085 (2015). PubMed PMC
Martens, M. et al. WikiPathways: Connecting communities. Nucleic Acids Res.49, D613–D621 (2021). PubMed PMC
Glaab, E., Baudot, A., Krasnogor, N., Schneider, R. & Valencia, A. EnrichNet: network-based gene set enrichment analysis. Bioinformatics28, i451–i457 (2012). PubMed PMC
Mitra, K., Carvunis, A. R., Ramesh, S. K. & Ideker, T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet.14, 719–732 (2013). PubMed PMC
Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A. F. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics18 (Suppl 1), S233–240 (2002). PubMed
Novoa-Del-Toro, E. M. et al. A multi-objective genetic algorithm to find active modules in multiplex biological networks. PLoS Comput. Biol.17, e1009263 (2021). PubMed PMC
Ulgen, E., Ozisik, O. & Sezerman, O. U. pathfindR: An R Package for Comprehensive Identification of Enriched pathways in Omics Data through active subnetworks. Front. Genet.10, 858 (2019). PubMed PMC
Levi, H., Elkon, R. & Shamir, R. DOMINO: A network-based active module identification algorithm with reduced rate of false calls. Mol. Syst. Biol.17, e9593 (2021). PubMed PMC
Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol.4, Article17 (2005). PubMed
Morselli Gysi, D., Voigt, A., Fragoso, T. M., Almaas, E. & Nowick, K. wTO: An R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinform.19, 392 (2018). PubMed PMC
Ideker, T. & Krogan, N. J. Differential network biology. Mol. Syst. Biol.8, 565 (2012). PubMed PMC
Li, J., Li, Y. X. & Li, Y. Y. Differential regulatory analysis based on coexpression network in cancer research. Biomed. Res. Int. 4241293 (2016). (2016). PubMed PMC
Morselli Gysi, D. et al. Whole transcriptomic network analysis using co-expression Differential Network Analysis (CoDiNA). PLoS One. 15, e0240523 (2020). PubMed PMC
de Weerd, H. A. et al. MODifieR: An Ensemble R Package for Inference of Disease modules from Transcriptomics Networks. Bioinformatics36, 3918–3919 (2020). PubMed
Labadorf, A. et al. RNA sequence analysis of human Huntington Disease Brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One. 10, e0143563 (2015). PubMed PMC
Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Primers. 1, 15005 (2015). PubMed
MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell72, 971–983 (1993). PubMed
McColgan, P. & Tabrizi, S. J. Huntington’s disease: A clinical review. Eur. J. Neurol.25, 24–34 (2018). PubMed
Roos, R. A. C. Huntington’s disease: A clinical review. Orphanet J. Rare Dis.5, 40 (2010). PubMed PMC
Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res.50, D687–D692 (2022). PubMed PMC
Raudvere, U. et al. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res.47, W191–W198 (2019). PubMed PMC
Ozisik, O., Térézol, M. & Baudot, A. orsum: A Python package for filtering and comparing enrichment analyses using a simple principle. BMC Bioinform.23, 293 (2022). PubMed PMC
Ellrichmann, G., Reick, C., Saft, C. & Linker, R. A. The role of the immune system in Huntington’s disease. Clin. Dev. Immunol. 541259 (2013). (2013). PubMed PMC
Clark, L. F. & Kodadek, T. The Immune System and Neuroinflammation as potential sources of blood-based biomarkers for Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. ACS Chem. Neurosci.7, 520–527 (2016). PubMed
Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics33, 2938–2940 (2017). PubMed PMC
Kandasamy, M., Reilmann, R., Winkler, J., Bogdahn, U. & Aigner, L. Transforming Growth Factor-Beta Signaling in the Neural Stem Cell Niche: A Therapeutic Target for Huntington’s Disease. Neurol. Res. Int. 124256 (2011). (2011). PubMed PMC
Song, C., Perides, G. & Liu, Y. F. Expression of full-length polyglutamine-expanded huntingtin disrupts growth factor receptor signaling in rat pheochromocytoma (PC12) cells. J. Biol. Chem.277, 6703–6707 (2002). PubMed
Apostol, B. L. et al. Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum. Mol. Genet.15, 273–285 (2006). PubMed
Freitas, A. et al. Bioinformatic analysis of the human brain extracellular matrix proteome in neurodegenerative disorders. Eur. J. Neurosci.53, 4016–4033 (2021). PubMed
Crapser, J. D. et al. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington’s disease. Brain143, 266–288 (2020). PubMed PMC
Aykaç, A. & Şehirli, A. Ö. The role of the SLC Transporters Protein in the neurodegenerative disorders. Clin. Psychopharmacol. Neurosci.18, 174–187 (2020). PubMed PMC
Hodges, A. et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum. Mol. Genet.15, 965–977 (2006). PubMed
Li, X. et al. Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington’s disease. J. Neurosci.30, 4552–4561 (2010). PubMed PMC
Suzuki, M., Desmond, T. J., Albin, R. L. & Frey, K. A. Vesicular neurotransmitter transporters in Huntington’s disease: initial observations and comparison with traditional synaptic markers. Synapse41, 329–336 (2001). PubMed
Wu, J. et al. A Novel Huntington’s Disease Assessment platform to support Future Drug Discovery and Development. Int. J. Mol. Sci.23, 14763 (2022). PubMed PMC
Jankovic, J. & Clarence-Smith, K. Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders. Expert Rev. Neurother.11, 1509–1523 (2011). PubMed
Periayah, M. H., Halim, A. S. & Mat Saad, A. Z. Mechanism action of platelets and crucial blood coagulation pathways in Hemostasis. Int. J. Hematol. Oncol. Stem Cell. Res.11, 319–327 (2017). PubMed PMC
Denis, H. L. et al. Platelet abnormalities in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 90, 272–283 (2019). PubMed PMC
Hands, S. L., Mason, R., Sajjad, M. U., Giorgini, F. & Wyttenbach, A. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington’s disease. Biochem. Soc. Trans.38, 552–558 (2010). PubMed
Cornett, J. et al. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat. Genet.37, 198–204 (2005). PubMed
Grima, J. C. et al. Mutant huntingtin disrupts the Nuclear Pore Complex. Neuron94, 93–107e6 (2017). PubMed PMC
Coyne, A. N. & Rothstein, J. D. Nuclear pore complexes - a doorway to neural injury in neurodegeneration. Nat. Rev. Neurol.18, 348–362 (2022). PubMed PMC
Spead, O., Zaepfel, B. L. & Rothstein, J. D. Nuclear Pore Dysfunction in Neurodegeneration. Neurotherapeutics19, 1050–1060 (2022). PubMed PMC
Lange, J. et al. Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington’s Disease PSC-Derived Striatal neurons. Front. Cell. Neurosci.15, 742763 (2021). PubMed PMC
Li, D., McIntosh, C. S., Mastaglia, F. L., Wilton, S. D. & Aung-Htut, M. T. Neurodegenerative diseases: A hotbed for splicing defects and the potential therapies. Transl Neurodegener. 10, 16 (2021). PubMed PMC
Nikom, D. & Zheng, S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat. Rev. Neurosci.24, 457–473 (2023). PubMed
Tano, V. et al. Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington’s disease. EBioMedicine94, 104720 (2023). PubMed PMC
Heinz, A., Nabariya, D. K. & Krauss, S. Huntingtin and its role in mechanisms of RNA-Mediated toxicity. Toxins (Basel). 13, 487 (2021). PubMed PMC
Schilling, J. et al. Deregulated splicing is a major mechanism of RNA-Induced toxicity in Huntington’s Disease. J. Mol. Biol.431, 1869–1877 (2019). PubMed
Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. U S A. 110, 2366–2370 (2013). PubMed PMC
Mason, M. A. et al. Silencing Srsf6 does not modulate incomplete splicing of the huntingtin gene in Huntington’s disease models. Sci. Rep.10, 14057 (2020). PubMed PMC
Teuling, E. et al. Modifiers of mutant huntingtin aggregation: functional conservation of C. Elegans-modifiers of polyglutamine aggregation. PLoS Curr.3, RRN1255 (2011). PubMed PMC
Szklarczyk, D. et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res.51, D638–D646 (2023). PubMed PMC
Pfalzer, A. C. et al. Alterations in metal homeostasis occur prior to canonical markers in Huntington disease. Sci. Rep.12, 10373 (2022). PubMed PMC
Scholefield, M., Unwin, R. D. & Cooper, G. J. S. Shared perturbations in the metallome and metabolome of Alzheimer’s, Parkinson’s, Huntington’s, and dementia with Lewy bodies: A systematic review. Ageing Res. Rev.63, 101152 (2020). PubMed
Pfalzer, A. C. et al. Huntington’s disease genotype suppresses global manganese-responsive processes in pre-manifest and manifest YAC128 mice. Metallomics12, 1118–1130 (2020). PubMed PMC
Sakuma, S. & D’Angelo, M. A. The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell. Dev. Biol.68, 72–84 (2017). PubMed PMC
Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC
Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform.9, 559 (2008). PubMed PMC
Abbassi-Daloii, T., Kan, H. E., Raz, V. & 't Hoen, P. A. C. Recommendations for the analysis of gene expression data to identify intrinsic differences between similar tissues. Genomics112, 3157–3165 (2020). PubMed
Kutmon, M., Ehrhart, F., Willighagen, E. L., Evelo, C. T. & Coort, S. L. CyTargetLinker app update: A flexible solution for network extension in Cytoscape. F1000Res. 7, ELIXIR-743 (2018). PubMed PMC
Oughtred, R. et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci.30, 187–200 (2021). PubMed PMC
Pio-Lopez, L., Valdeolivas, A., Tichit, L., Remy, É. & Baudot, A. MultiVERSE: A multiplex and multiplex-heterogeneous network embedding approach. Sci. Rep.11, 8794 (2021). PubMed PMC
Alonso-López, D. et al. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res.44, W529–535 (2016). PubMed PMC
Alonso-López, D. et al. APID database: Redefining protein-protein interaction experimental evidences and binary interactomes. Database (Oxford) baz005 (2019). (2019). PubMed PMC
Luck, K. et al. A reference map of the human binary protein interactome. Nature580, 402–408 (2020). PubMed PMC
Pratt, D. et al. NDEx 2.0: A clearinghouse for Research on Cancer pathways. Cancer Res.77, e58–e61 (2017). PubMed PMC
Huang, J. K. et al. Systematic evaluation of Molecular Networks for Discovery of Disease genes. Cell. Syst.6, 484–495e5 (2018). PubMed PMC
Drew, K. et al. Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Mol. Syst. Biol.13, 932 (2017). PubMed PMC
Giurgiu, M. et al. CORUM: The comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res.47, D559–D563 (2019). PubMed PMC
Türei, D. et al. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol.17, e9923 (2021). PubMed PMC