Influence of 3D Printing Conditions on Physical-Mechanical Properties of Polymer Materials

. 2024 Dec 28 ; 17 (1) : . [epub] 20241228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39795446

Grantová podpora
CZ.02.01.01/00/22_008/0004631 European Union and the state budget of the Czech Republic

The popularity of 3D printing technology is rapidly increasing worldwide. It can be applied to metals, ceramics, composites, hybrids, and polymers. Three-dimensional printing has the potential to replace conventional manufacturing technologies because it is cost effective and environmentally friendly. This paper focuses on the influence of 3D printing conditions on the physical and mechanical properties of polylactic acid (PLA), poly(methyl methacrylate) (PMMA), and poly(ethylene terephthalate glycol-modified) (PETG) materials produced using Fused Deposition Modeling (FDM) technology. The impact of nozzle diameter, layer height, and printing temperature on the mechanical (i.e., bending stiffness and vibration damping) and physical (i.e., sound absorption and light transmission) properties of the studied polymer materials was investigated. It can be concluded that 3D printing conditions significantly influenced the structure and surface shape of the 3D-printed polymer samples and, consequently, their physical and mechanical properties. Therefore, it is essential to consider the type of filament used and the 3D printing conditions for specific 3D-printed material applications.

Zobrazit více v PubMed

Wang X., Jiang M., Zhou Z., Gou J., Hui D. 3D printing of polymer matrix composites: A review and prospective. Compos. B Eng. 2017;110:442–458. doi: 10.1016/j.compositesb.2016.11.034. DOI

Mondal K., Tripathy P.K. Preparation of Smart Materials by Additive Manufacturing Technologies: A Review. Materials. 2021;14:6442. doi: 10.3390/ma14216442. PubMed DOI PMC

Panda B., Tan M.J., Gibson I., Chua C.K. The disruptive evolution of 3D printing; Proceedings of the 2nd International Conference on Progress in Additive Manufacturing; Singapore. 17–19 May 2016; pp. 16–19.

Jadhav A., Jadhav V.S. A review on 3D printing: An additive manufacturing technology. Mater. Today Proc. 2022;62:2094–2099. doi: 10.1016/j.matpr.2022.02.558. DOI

Chen Z., Li Z., Li J., Liu C., Lao C., Fu Y., Liu C., Li Y., Wang P., He Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019;39:661–687. doi: 10.1016/j.jeurceramsoc.2018.11.013. DOI

Shah J., Snider B., Clarke T., Kozutsky S., Lacki M., Hosseini A. Large-Scale 3D Printers for Additive Manufacturing Design Considerations and Challenges. Int. J. Adv. Manuf. Technol. 2019;104:3679–3693. doi: 10.1007/s00170-019-04074-6. DOI

Bianhong L., Wei Q., Qiong W. Research progress of carbon materials in the field of three-dimensional printing polymer nanocomposites. Nanotechnol. Rev. 2022;11:1193–1208. doi: 10.1515/ntrev-2022-0051. DOI

Singh T., Kumar S., Sehgal S. 3D printing of engineering materials: A state of the art review. Mater. Today Proc. 2020;28:1927–1931. doi: 10.1016/j.matpr.2020.05.334. DOI

Praveena B.A., Lokesh N., Buradi A., Santhosh N., Praveena B.L., Vignesh R. A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends, and future potential. Mater. Today Proc. 2022;52:1309–1313.

Mobarak M.H., Islam M.A., Hossain N., Al Mahmud M.Z., Rayhan M.T., Nishi N.J., Chowdhury M.A. Recent Advances of Additive Manufacturing in Implant Fabrication—A Review. Appl. Surf. Sci. Adv. 2023;18:100462. doi: 10.1016/j.apsadv.2023.100462. DOI

Hou X., Sitthisang S., Song B., Xu X., Jonhson W., Tan Y., Yodmuang S., He C. Entropically Toughened Robust Biodegradable Polymer Blends and Composites for Bone Tissue Engineering. ACS Appl. Mater. Interfaces. 2024;16:2912–2920. doi: 10.1021/acsami.3c14716. PubMed DOI

Bravi L., Murmura F. Additive manufacturing in the food sector: A literature review. Macromol. Symp. 2021;395:2000199. doi: 10.1002/masy.202000199. DOI

Manstan T., Chandler S.L., McSweeney M.B. Consumers’ attitudes towards 3D printed foods after a positive experience: An exploratory study. J. Sens. Stud. 2020;36:12619. doi: 10.1111/joss.12619. DOI

Chung M.J., Lee S.H., Kim H.W., Chung M.S., Park H.J. Investigating the effect of lattice design on sauce adhesion in 3D printed durum wheat pasta. Food Biosci. 2024;59:103858. doi: 10.1016/j.fbio.2024.103858. DOI

Lv S., Li H., Liu Z., Cao S., Yao L., Zhu Z., Hu L., Xu D., Mo H. Preparation of Pleurotus eryngii protein baked food by 3D printing. J. Food Eng. 2024;365:111845. doi: 10.1016/j.jfoodeng.2023.111845. DOI

Aliotta L., Sergi C., Dal Pont B., Coltelli M.B., Gigante V., Lazzeri A. Sustainable 3D printed poly (lactic acid) (PLA)/Hazelnut shell powder bio composites for design applications. Mater. Today Sustain. 2024;26:100780. doi: 10.1016/j.mtsust.2024.100780. DOI

Song Y., Ghafari Y., Asefnejad A., Toghraie D. An Overview of Selective Laser Sintering 3D Printing Technology for Biomedical and Sports Device Applications: Processes, Materials, and Applications. Opt. Laser Technol. 2024;171:110459. doi: 10.1016/j.optlastec.2023.110459. DOI

Zheng S.Y., Shen Y., Zhu F., Yin J., Qian J., Fu J., Wu Z.L., Zheng Q. Programmed Deformations of 3D-Printed Tough Physical Hydrogels with High Response Speed and Large Output Force. Adv. Funct. Mater. 2018;28:1803366. doi: 10.1002/adfm.201803366. DOI

Novak E., Wisdom S. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers’ Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science. J. Sci. Educ. Technol. 2018;27:412–432. doi: 10.1007/s10956-018-9733-5. DOI

Islam A., Hasan J., Hossain K.R. Intelligent materials in 3D printing: A journey from additive manufacturing to 4D printing. Int. J. Adv. Manuf. Technol. 2024;4:2024016. doi: 10.51393/j.jamst.2024016. DOI

Huang S.H., Liu P., Mokasdar A., Hou L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 2013;67:1191–1203. doi: 10.1007/s00170-012-4558-5. DOI

Farashi S., Vafaee F. Effect of printing parameters on the tensile strength of FDM 3D samples: A meta-analysis focusing on layer thickness and sample orientation. Prog. Addit. Manuf. 2022;7:565–582. doi: 10.1007/s40964-021-00247-6. DOI

Kámán A., Balogh L., Tarcsay B.L., Jakab M., Meszlényi A., Turcsán T., Egedy A. Glass Fibre-Reinforced Extrusion 3D printed Composites: Experimental and Numerical Study of Mechanical Properties. Polymers. 2024;16:212. doi: 10.3390/polym16020212. PubMed DOI PMC

Shergill K., Chen Y., Bull S. What controls layer thickness effects on the mechanical properties of additive manufactured polymers. Surf. Coat. Technol. 2023;475:130131. doi: 10.1016/j.surfcoat.2023.130131. DOI

Rubashevskyi V.V., Shukayev S.M., Babak A.M. Effect of 3D Printing Process Parameters on the Mechanical Characteristics of Graphite-Modified Polylactide in Compression Tests. Strength Mater. 2022;54:1019–1026. doi: 10.1007/s11223-023-00496-6. DOI

Gonabadi H., Yadav A., Bull S.J. The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. Int. J. Adv. Manuf. Technol. 2020;111:695–709. doi: 10.1007/s00170-020-06138-4. DOI

Chacón J.M., Caminero M.A., García-Plaza E., Núñez P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017;124:143–157. doi: 10.1016/j.matdes.2017.03.065. DOI

Hasan A., Fahad M., Khan M.A. Effect of print parameters on the tensile strength and built time of FDM-printed PLA parts. Int. J. Adv. Manuf. Technol. 2024;132:3047–3065. doi: 10.1007/s00170-024-13506-x. DOI

Tomanik M., Żmudzińska M., Wojtków M. Mechanical and Structural Evaluation of the PA12 Desktop Selective Laser Sintering Printed Parts Regarding Printing Strategy. 3D Print. Addit. Manuf. 2021;1:1–9. doi: 10.1089/3dp.2020.0111. PubMed DOI PMC

Azadi M., Dadashi A., Dezianian S., Kianifar M., Torkaman S., Chiyani M. High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces Mech. 2021;3:100016. doi: 10.1016/j.finmec.2021.100016. DOI

Shaik Y.P., Schuster J. FDM 3D printing in high-pressure oxygen and pure nitrogen atmospheres & evaluation of mechanical properties; Proceedings of the 23rd International Conference on Composite Materials; Belfast, Ireland. 30 July–4 August 2023; pp. 1–10.

Behzadnasab M., Yousefi A.A., Ebrahimibagha D., Nasiri F. Effects of processing conditions on mechanical properties of PLA printed parts. Rapid Prototyp. J. 2020;26:381–389. doi: 10.1108/RPJ-02-2019-0048. DOI

Gupta P., Kumari S., Gupta A., Sinha A.K., Jindal P. Effect of heat treatment on mechanical properties of 3D printed polylactic acid parts. Mater. Test. 2021;63:73–78. doi: 10.1515/mt-2020-0010. DOI

Głowacki M., Mazurkiewic A., Skórczewsk K., Lewandowsk K., Smyk E., Branco R. Effect of Thermal Shock Conditions on the Low-Cycle Fatigue Performance of 3D printed Materials: Acrylonitrile Butadiene Styrene, Acrylonitrile-Styrene-Acrylate, High-Impact Polystyrene, and Poly (lactic acid) Polymers. 2024;16:1823. doi: 10.3390/polym16131823. PubMed DOI PMC

Bakardzhiev V., Sabev S., Kasabov P. Research on the impact of extrusion temperature, printing speed, and layer thickness in 3D printing using material deposition technology; Proceedings of the 11th International Scientific Conference “TECHSYS 2022”—Engineering, Technologies and Systems; Plovdiv, Bulgaria. 26–28 May 2022.

Li G., Zhao J., Jiang J., Jiang H., Wu W., Tang M. Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing. Int. J. Adv. Manuf. Technol. 2018;96:2747–2755. doi: 10.1007/s00170-018-1789-0. DOI

Li G., Zhao J., Wu W., Jiang J., Wang B., Jiang H., Fuh J.Y.H. Effect of ultrasonic vibration on mechanical properties of 3d printing non-crystalline and semi-crystalline polymers. Materials. 2018;11:826. doi: 10.3390/ma11050826. PubMed DOI PMC

Ning F., Cong W., Qiu J., Wei J., Wang S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. B Eng. 2015;80:369–378. doi: 10.1016/j.compositesb.2015.06.013. DOI

Abeykoon C., Sri-Amphorn P., Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. Int. J. Light. Mater. Manuf. 2020;3:284–297. doi: 10.1016/j.ijlmm.2020.03.003. DOI

Lebedev S.M., Gefle O.S., Amitov E.T., Zhuravlev D.V., Berchuk D.Y., Mikutskiy E.A. Mechanical properties of PLA-based composites for fused deposition modeling technology. Int. J. Adv. Manuf. Technol. 2018;97:511–518. doi: 10.1007/s00170-018-1953-6. DOI

Ahn S.H., Montero M., Odell D., Roundy S., Wright P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002;8:248–257. doi: 10.1108/13552540210441166. DOI

Ermolai V., Irimia A. Influence of nozzle parameters in 3D printing under the manufacturing time. Bull. Polytech. Inst. Iași Mach. Constr. Sect. 2021;67:63–72. doi: 10.2478/bipcm-2021-0017. DOI

Finnes T. High Definition 3D Printing-Comparing SLA and FDM Printing Technologies. J. Undergrad. Res. 2015;13:10–26.

Altan M., Eryildiz M., Gumus B., Kahraman Y. Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): Surface roughness and tensile strength. Mater. Test. 2018;60:471–477. doi: 10.3139/120.111178. DOI

Szczęch M., Sikora W. The Influence of Printing Parameters on Leakage and Strength of Fused Deposition Modelling 3D Printed Parts. Adv. Sci. Technol. Res. J. 2024;18:195–201. doi: 10.12913/22998624/178330. DOI

Tao Y., Li P., Pan L. Improving Tensile Properties of Polylactic Acid Parts by Adjusting Printing Parameters of Open Source 3D Printers. Medziagotyra. 2020;26:83–87. doi: 10.5755/j01.ms.26.1.20952. DOI

Patil J.S., Sathish T., Makki E., Giri J. Experimental study on mechanical properties of FDM 3D printed polyactic acid fabricated parts using response surface methodology. AIP Adv. 2024;14:035125. doi: 10.1063/5.0191017. DOI

Plastics—Methods for Determining the Density of Non-Cellular Plastics—Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method. ISO; Geneva, Switzerland: 2019.

Plastics—Determination of Flexural Properties. ISO; Geneva, Switzerland: 2019.

Rao S.S. Mechanical Vibrations. 5th ed. Pearson Education, Inc.; Upper Saddle River, NJ, USA: 2011. pp. 281–287.

Carrella A., Brennan M.J., Waters T.P., Lopes V., Jr. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 2012;55:22–29. doi: 10.1016/j.ijmecsci.2011.11.012. DOI

Stephen N. On Energy Harvesting from Ambient Vibration. J. Sound Vib. 2006;293:409–425. doi: 10.1016/j.jsv.2005.10.003. DOI

Lv Q., Yao Z. Analysis of the Effects of Nonlinear Viscous Damping on Vibration Isolator. Nonlinear Dyn. 2015;79:2325–2332. doi: 10.1007/s11071-014-1814-2. DOI

Amran M., Fediuk R., Murali G., Vatin N., Al-Fakih A. Sound-Absorbing Acoustic Concretes: A Review. Sustainability. 2021;13:10712. doi: 10.3390/su131910712. DOI

Koizumi T., Tsujiuchi N., Adachi A. High Performance Structures and Materials. WIT Press; Southampton, UK: 2002. The development of sound absorbing materials using natural bamboo fibers; pp. 157–166.

International Organization for Standardization . ISO 10534-2, Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes-Part 2: Transfer-Function Method. ISO/TC 43/SC2 Building Acoustics; Geneva, Switzerland: CEN, European Committee for Standardization; Brussels, Belgium: 1998. pp. 10534–10542.

Li X., Liu B., Chang D. An acoustic impedance structure consisting of perforated panel resonator and porous material for low-to-mid frequency sound absorption. Appl. Acoust. 2021;180:108069. doi: 10.1016/j.apacoust.2021.108069. DOI

Taban E., Soltani P., Berardi U., Putra A., Mousavi S.M., Faridan M., Samaei S.E., Khavanin A. Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Build. Environ. 2020;180:107087. doi: 10.1016/j.buildenv.2020.107087. DOI

Wang S., Zhang J., Luo D., Gu G., Tang D., Dong Z., Tan G., Que W., Zhang T., Li S., et al. Transparent ceramics: Processing, materials and applications. Prog. Solid State Chem. 2013;41:20–54. doi: 10.1016/j.progsolidstchem.2012.12.002. DOI

Čejka Č., Ardan T., Širc J., Michálek J., Brůnová B., Čejková J. The influence of various toxic effects on the cornea and changes in corneal light transmission. Graefes Arch. Clin. Exp. Ophthalmol. 2010;248:1749–1756. doi: 10.1007/s00417-010-1438-2. PubMed DOI

Ghosh S.S., Biswas P.K., Neogi S. Effect of solar radiation at various incident angles on transparent conducting antimony doped indium oxide (IAO) film developed by sol-gel method on glass substrate as heat absorbing window glass fenestration. Sol. Energy. 2014;109:54–60. doi: 10.1016/j.solener.2014.08.020. DOI

Keaney E., Shearer J., Panwar A., Mead J. Refractive index matching for high light transmission composite systems. J. Compos. Mater. 2018;52:3299–3307. doi: 10.1177/0021998318764787. DOI

Ferrero A., Frisvad J.R., Simonot L., Santafé P., Schirmacher A., Campos J., Hebert M. Fundamental scattering quantities for the determination of reflectance and transmittance. Opt. Express. 2021;29:219–231. doi: 10.1364/OE.410225. PubMed DOI

Lighting Measurement in Interiére—Part 2: Daylighting Measurement. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2006.

Liu X., Xiong Y., Shen J., Guo S. Fast fabrication of a novel transparent PMMA light scattering materials with high haze by doping with ordinary polymer. Opt. Express. 2015;23:17793. doi: 10.1364/OE.23.017793. PubMed DOI

Preston C., Xu Y., Han X., Munday J.N., Hu L. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013;6:461–468. doi: 10.1007/s12274-013-0323-9. DOI

Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics. ASTM International; West Conshohocken, PA, USA: 2000.

Baddour M., Garcia-Campà R., Reyes P., D’hooge D.R., Cardon L., Edeleva M. Designing Prepregnation and Fused Filament Fabrication Parameters for Recycled PP- and PA-Based Continuous Carbon Fiber Composites. Materials. 2024;17:1788. doi: 10.3390/ma17081788. PubMed DOI PMC

Monková K., Monka P.P., Žaludek M., Beňo P., Hricová R., Šmeringaiová A. Experimental Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy. Aerospace. 2023;10:361. doi: 10.3390/aerospace10040361. DOI

Hsueh M.H., Lai C.J., Wang S.H., Zeng Y.S., Hsieh C.H., Pan C.Y., Huang W.C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG Using Fused Deposition Modeling. Polymers. 2021;13:1758. doi: 10.3390/polym13111758. PubMed DOI PMC

Akhoundi B., Behravesh A. Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Exp. Mech. 2019;59:883–897. doi: 10.1007/s11340-018-00467-y. DOI

Wach R.A., Wolszczak P., Adamus-Wlodarczyk A. Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing. Macromol. Mater. Eng. 2018;303:1800169. doi: 10.1002/mame.201800169. DOI

Kumar S., Teraiya S., Potdar Y. Experimental investigation on porosity and flexural strength of polymer parts fabricated by fused deposition modeling. Polym. Eng. Sci. 2023;63:531–545. doi: 10.1002/pen.26227. DOI

Al-Dwairi Z.N., Al Haj Ebrahim A.A., Baba N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA) J. Prosthodont. 2022;32:40–48. doi: 10.1111/jopr.13491. PubMed DOI

Humbeeck J. Van Non-medical applications of shape memory alloys. Mater. Sci. Eng. A. 1999;273–275:134–148. doi: 10.1016/S0921-5093(99)00293-2. DOI

Meng H., Yang X.H., Ren S.W., Xin F.X., Lu T.J. Sound propagation in composite micro-tubes with surface-mounted fibrous roughness elements. Compos. Sci. Technol. 2016;127:158–168. doi: 10.1016/j.compscitech.2016.02.035. DOI

Beníček L., Vašina M., Hrbáček P. Influence of 3D Printing Conditions on Physical-Mechanical Properties of Polymer Materials. Zenodo; Geneva, Switzerland: 2024. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...