Deciphering key nano-bio interface descriptors to predict nanoparticle-induced lung fibrosis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022YFE0124000
National Key R&D Program of China
CZ.10.03.01/00/22_003/0000048
European Union under the Refresh-Research Excellence for Region Sustainability and High-tech Industries project
PubMed
39810232
PubMed Central
PMC11731361
DOI
10.1186/s12989-024-00616-3
PII: 10.1186/s12989-024-00616-3
Knihovny.cz E-zdroje
- Klíčová slova
- biotransformation, lung fibrosis, nanosafety, nanotoxicity, predictive toxicology,
- MeSH
- buněčné linie MeSH
- kovové nanočástice * toxicita chemie MeSH
- lidé MeSH
- makrofágy účinky léků metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- plíce * účinky léků patologie metabolismus MeSH
- plicní fibróza * chemicky indukované patologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis. METHODS: We conducted a comprehensive analysis of the trajectory of metal oxide nanoparticles (MeONPs) within pulmonary systems. Two biological media (simulated lung fluid and phagolysosomal simulated fluid) and two cell lines (macrophages and epithelial cells) were meticulously chosen to scrutinize MeONP behaviors. Their interactions with MeONPs, also referred to as nano-bio interactions, can lead to alterations in the properties of the MeONPs as well as specific cellular responses. Physicochemical properties of MeONPs were assessed in biological media. The impact of MeONPs on cell membranes, lysosomes, mitochondria, and cytoplasmic components was evaluated using fluorescent probes, colorimetric enzyme substrates, and ELISA. The fibrogenic potential of MeONPs in mouse lungs was assessed by examining collagen deposition and growth factor release. Random forest classification was employed for analyzing in chemico, in vitro and in vivo data to identify predictive descriptors. RESULTS: The nano-bio interactions induced diverse changes in the 4 characteristics of MeONPs and had variable effects on the 14 cellular functions, which were quantitatively evaluated in chemico and in vitro. Among these 18 quantitative features, seven features were found to play key roles in predicting the pro-fibrogenic potential of MeONPs. Notably, IL-1β was identified as the most important feature, contributing 27.8% to the model's prediction. Mitochondrial activity (specifically NADH levels) in macrophages followed closely with a contribution of 17.6%. The remaining five key features include TGF-β1 release and NADH levels in epithelial cells, dissolution in lysosomal simulated fluids, zeta potential, and the hydrodynamic size of MeONPs. CONCLUSIONS: The pro-fibrogenic potential of MeONPs can be predicted by combination of key features at nano-bio interfaces, simulating their behavior and interactions within the lung environment. Among the 18 quantitative features, a combination of seven in chemico and in vitro descriptors could be leveraged to predict lung fibrosis in animals. Our findings offer crucial insights for developing in silico predictive models for nano-induced pulmonary fibrosis.
Department of Biological Chemistry Belarusian State Medical University Minsk 220089 Belarus
Department of Chemistry University of Malta Msida 2080 MSD Malta
School of Public Health Suzhou Medical School Soochow University Suzhou Jiangsu 215123 China
Zobrazit více v PubMed
Fytianos G, Rahdar A, Kyzas GZ. Nanomaterials Cosmetics: Recent Updates Nanomaterials. 2020;10(5):16. PubMed PMC
Carley LN, Panchagavi R, Song X, Davenport S, Bergemann CM, McCumber AW, Gunsch CK, Simonin M. Long-Term Effects of Copper Nanopesticides on Soil and Sediment Community Diversity in Two Outdoor Mesocosm Experiments. Environ Sci Technol. 2020;54(14):8878–89. PubMed
Couto C, Almeida A. Metallic Nanoparticles in the Food Sector: A Mini-Review. Foods. 2022;11(3):22. PubMed PMC
Joseph TM, Mahapatra DK, Esmaeili A, Piszczyk L, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials 2023, 13 (3), 58. PubMed PMC
Pomerantseva E, Bonaccorso F, Feng XL, Cui Y, Gogotsi Y. Energy storage: The future enabled by nanomaterials. Science. 2019;366(6468):eaan8285. PubMed
Yao J, Zou FL, Feng J, You RT, Sun JX, Zhang XF, Xiang Y. Z., 3D printing technology based on nanometer materials in mechanical automation processing. Ferroelectrics. 2021;578(1):81–94.
Haruna S, Adamu M, Ibrahim YE, Haruna SI, ElDin HMS, Hamza MF, Azab M. Multifunctional engineered cementitious composites modified with nanomaterials and their applications: An overview. Rev Adv Mater Sci. 2023;62(1):15.
Nanotechnology Products Database. https://product.statnano.com/. (accessed 10/10/2023).
Semenzin E, Subramanian V, Pizzol L, Zabeo A, Fransman W, Oksel C, Hristozov D, Marcomini A. Controlling the risks of nano-enabled products through the life cycle: The case of nano copper oxide paint for wood protection and nano-pigments used in the automotive industry. Environ Int. 2019;31:104901. PubMed
Xia T, Zhu YF, Mu LN, Zhang ZF, Liu SJ. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Natl Sci Rev. 2016;3(4):416–29. PubMed PMC
Wu WD, Jin YF, Carlsten C. Inflammatory health effects of indoor and outdoorparticulate matter. J Allergy Clin Immunol. 2018;141(3):833–44. PubMed
Brook DR, Rajagopalan S, Pope CA 3rd, Brook RJ, Bhatnagar A, Diez-Roux VA, Holguin F, Hong YL, Luepker VR, Murray A, Mittleman AM, Peters A, Siscovick D, Smith CS Jr, Whitsel L, Kaufman DJ. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. PubMed
Wang RL, Song B, Wu JR, Zhang YL, Chen AJ, Shao LQ. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomed. 2018;11(13):8487–506. PubMed PMC
O’Piela DR, Durisek GR 3rd, Escobar ., Mackos YH, Wold AR. Particulate matter and Alzheimer’s disease: an intimate connection. Trends Mol Med. 2022;28(9):770–80. PubMed PMC
Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, Kuan FC, Marongiu F, Evans EJ, Moore DA, Rodrigues FS, Pich O, Bakker B, Cha HG, Myers R, van Maldegem F, Boumelha J, Veeriah S, Rowan A, Naceur-Lombardelli C, Karasaki T, Sivakumar M, De S, Caswell DR, Nagano A, Black JRM, Martínez-Ruiz C, Ryu MH, Huff RD, Li S, Favé MJ, Magness A, Suárez-Bonnet A, Priestnall SL, Lüchtenborg M, Lavelle K, Pethick J, Hardy S, McRonald FE, Lin MH, Troccoli CI, Ghosh M, Miller YE, Merrick DT, Keith RL, Al Bakir M, Bailey C, Hill MS, Saal LH, Chen Y, George AM, Abbosh C, Kanu N, Lee SH, McGranahan N, Berg CD, Sasieni P, Houlston R, Turnbull C, Lam S, Awadalla P, Grönroos E, Downward J, Jacks T, Carlsten C, Malanchi I, Hackshaw A, Litchfield K, Lester. Nature. 2023;616(7955):159–67., J. F.; DeGregori, J.; Jamal-Hanjani, M.; Swanton, C., Lung adenocarcinoma promotion by air pollutants. PubMed PMC
Jederlinic PJ, Abraham JL, Churg A, Himmelstein JS, Epler GR, Gaensler EA. Pulmonary fibrosis in aluminum oxide workers. Investigation of nine workers, with pathologic examination and microanalysis in three of them. Am Rev Respir Dis. 1990;142(5):1179–84. PubMed
Taiwo OA, Sircar KD, Slade MD, Cantley LF, Vegso SJ, Rabinowitz PM, Fiellin MG, Cullen M. R.,Incidence of asthma among aluminum workers. J Occup Environ Med. 2006;48(3):275–82. PubMed
Kraus T, Schaller KH, Angerer J, Hilgers RD, Letzel S. Aluminosis–detection of an almost forgotten disease with HRCT. J Occup Med Toxicol. 2006;1:4. PubMed PMC
Björ O, Damber L, Edström C, Nilsson T. Long-term follow-up study of mortality and the incidence of cancer in a cohort of workers at a primary aluminum smelter in Sweden. Scand J Work Environ Health. 2008;34(6):463–70. PubMed
Schulte PA, Veruscka Leso V, Niang M, Iavicoli I. Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand J Work Environ Health. 2019;45(3):217–38. PubMed PMC
Cho WS, Duffin R, Howie SEM, Scotton CJ, Wallace WAH, MacNee W, Bradley M, Megson IL, Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 2011;8:16. PubMed PMC
Wu WT, Ichihara G, Hashimoto N, Hasegawa Y, Hayashi Y, Tada-Oikawa S, Suzuki Y, Chang J, Kato M, D’Alessandro-Gabazza CN, Gabazza EC, Ichihara S. Synergistic Effect of Bolus Exposure to Zinc Oxide Nanoparticles on Bleomycin-Induced Secretion of Pro-Fibrotic Cytokines without Lasting Fibrotic Changes in Murine Lungs. Int J Mol Sci. 2015;16(1):660–76. PubMed PMC
Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, Castranova V. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol. 2012;262(3):255–64. PubMed PMC
Schwotzer D, Ernst H, Schaudien D, Kock H, Pohlmann G, Dasenbrock C, Creutzenberg O. Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats. Part Fibre Toxicol. 2017;14:20. PubMed PMC
Horváth T, Papp A, Kiricsi N, Igaz N, Trenka V, Kozma G, Tiszlavicz L, Rázga Z, Vezér T. Investigation of the effect of titanium dioxide nanorods on the lungs in a subacute rat model. Orv Hetil. 2019;160(2):57–66. PubMed
Hansen SF, Lennquist A. Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern. Nat Nanotechnol. 2020;15(1):3–4. PubMed
Heller DA, Jena PV, Pasquali M, Kostarelos K, Delogu LG, Meidl RE, Rotkin SV, Scheinberg DA, Schwartz RE, Terrones M, Wang YH, Bianco A, Boghossian AA, Cambré S, Cognet L, Corrie SR, Demokritou P, Giordani S, Hertel T, Ignatova T, Islam MF, Iverson NM, Jagota A, Janas D, Kono J, Kruss S, Landry MP, Li Y, Martel R, Maruyama S, Naumov AV, Prato M, Quinn SJ, Roxbury D, Strano MS, Tour JM, Weisman RB, Wenseleers W, Yudasaka M. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat Nanotechnol. 2020;15:164–6. PubMed PMC
Fadeel B, Farcal L, Hardy B, Vázquez-Campos S, Hristozov D, Marcomini A, Lynch I, Valsami-Jones E, Alenius H, Savolainen K. Nat Nanotechnol. 2018;13(7):537–43. Advanced tools for the safety assessment of nanomaterials. PubMed
Wyrzykowska E, Mikolajczyk A, Lynch I, Jeliazkova N, Kochev N, Sarimveis H, Doganis P, Karatzas P, Afantitis A, Melagraki G, Serra A, Greco D, Subbotina J, Lobaskin V, Bañares MA, Valsami-Jones E, Jagiello K, Puzyn T. Representing and describing nanomaterials in predictive nanoinformatics. Nat Nanotechnol. 2022;17(9):924–32. PubMed
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol. 2016;11(5):479–86. PubMed
Li RB, Ji ZX, Qin HQ, Kang XD, Sun BB, Wang MY, Chang CH, Wang X, Zhang HY, Zou HF, Nel AE, Xia T. Interference in Autophagosome Fusion by Rare Earth Nanoparticles Disrupts Autophagic Flux and Regulation of an Interleukin-1β Producing Inflammasome. ACS Nano. 2014;8(10):10280–92. PubMed PMC
Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci U S A. 2010;107(45):19449–54. PubMed PMC
Huang Y, Li XH, Xu SJ, Zheng HZ, Zhang LL, Chen JW, Hong HX, Kusko R, Li RB. Quantitative Structure-Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles. Environ Health Perspect. 2020;128(6):13. PubMed PMC
Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 2009;4(11):747–51. PubMed PMC
Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG. A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. 2010;7:36. PubMed PMC
Huang Y, Cao J, Li X, Yang Q, Xie Q, Liu X, Cai X, Chen J, Hong H, Li R. Multimodal Feature Fusion Machine Learning for Predicting Chronic Injury Induced by Engineered Nanomaterials. [Unpublished manuscript].
Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol. 1988;41(4):467–70. PubMed PMC
Strak M, Janssen NAH, Godri KJ, Gosens I, Mudway IS, Cassee FR, Lebret E, Kelly FJ, Harrison RM, Brunekreef B, Steenhof M, Hoek G. Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Potential—The RAPTES Project. Environ Health Perspect. 2012;120:1183–9. PubMed PMC
Tahara M, Fujino Y, Yamasaki K, Oda K, Kido T, Sakamoto N, Kawanami T, Kataoka K, Egashira R, Hashisako M, Suzuki Y, Fujisawa T, Mukae H, Suda T, Yatera K. Exposure to PM2.5 is a risk factor for acute exacerbation of surgically diagnosed idiopathic pulmonary fibrosis: a case–control study. Respir Res. 2021;22:80. PubMed PMC
Vinikoor-Imler LC, Davis JA, Luben TJ. An Ecologic Analysis of County-Level PM2.5 Concentrations and Lung Cancer Incidence and Mortality. Int J Environ Res Public Health. 2011;8(6):1865–71. PubMed PMC
Cui P, Huang Y, Han J, Song F, Chen K. Ambient particulate matter and lung cancer incidence and mortality: a meta-analysis of prospective studies. Eur J Public Health. 2015;25(2):324–9. PubMed
Cai XM, Dong J, Liu J, Zheng HZ, Kaweeteerawat C, Wang FJ, Ji ZX, Li RB. Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nat Commun. 2018;9:4416. PubMed PMC
Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57. PubMed
Aminabad NS, Farshbaf M, Akbarzadeh A. Recent Advances of Gold Nanoparticles in Biomedical Applications: State of the Art. Cell Biochem Biophys. 2019;77(2):123–37. PubMed
Cho WS, Duffin R, Howie SEM, Scotton CJ, Wallace WAH, MacNee W, Bradley M, Megson IL, Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 2011;8:27. PubMed PMC
Zhang J, Qin X, Wang B, Xu G, Qin ZX, Wang J, Wu LX, Ju XW, Bose DD, Qiu F, Zhou HH, Zou Z. Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death Dis. 2017;8:e2954. PubMed PMC
Li RB, Guiney LM, Chang CH, Mansukhani ND, Ji ZX, Wang X, Liao YP, Jiang W, Sun BB, Hersam MC, Nel AE, Xia T. Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano. 2018;12(2):1390–402. PubMed PMC
Liu X, Li JK, Zitolo A, Gao M, Jiang J, Geng XT, Xie QQ, Wu D, Zheng HZ, Cai XM, Lu JM, Jaouen F, Li RB. Doped Graphene To Mimic the Bacterial NADH Oxidase for One- Step NAD plus Supplementation in Mammals. J Am Chem Soc. 2023;145(5):3108–20. PubMed
Li RB, Ji ZX, Dong JY, Chang CH, Wang X, Sun BB, Wang MY, Liao YP, Zink JI, Nel AE, Xia T. Enhancing the Imaging and Biosafety of Upconversion Nanoparticles through Phosphonate Coating. ACS Nano. 2015;9(3):3293–306. PubMed PMC
Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Rivera Gil P. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnol. 2012;10:28. PubMed PMC
Xu S, Zheng H, Ma R, Wu D, Pan Y, Yin C, et al. Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death. Nat Commun. 2020;11:3484. PubMed PMC
Présumé M, Simon-Deckers A, Tomkiewicz-Raulet C, Le Grand B, Van Tran J, Beaune G, et al. Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology. 2016;10(10):1535–44. PubMed
Wang X, Xia T, Ntim SA, Ji Z, George S, Meng H, et al. Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multiwalled Carbon Nanotubes in Mammalian Tissue Culture Cells. ACS Nano. 2010;4(12):7241–52. PubMed PMC
Allen TJ, Spiteri AM. Growth factors in idiopathic pulmonary fibrosis: relative roles. Resp Res. 2001;3:13. PubMed PMC
Ma Y, Guo Y, Ye YS, Huang HL, Lv KQ, Ke ZQ. Different effects of titanium dioxide nanoparticles instillation in young and adult mice on DNA methylation related with lung inflammation and fibrosis.Ecotox. Environ Safe. 2019;176:1–10. PubMed
Lardot CG, Huaux FA, Broeckaert FR, Declerck PJ, Delos M, Fubini B, Lison DF. Role of urokinase in the fibrogenic response of the lung to mineral particles.Amer. Thorac Soc. 1998;157(2):617–28. PubMed
Swennen B, Buchet JP, Stanescu D, Lison D, Lauwerys. R.,Epidemiologic survey of workers exposed to cobalt oxides, cobalt salts and cobalt metal. Br J Ind Med. 1993;50(9):835–42. PubMed PMC
Badding MA, Fix NR, Orandle MS, Barger MW, Dunnick KM, Cummings KJ, Leonard SS. Pulmonary toxicity of indium-tin oxide production facility particles in rats. J Appl Toxicol. 2016;36(4):618–26. PubMed PMC
Chang XH, Zhu A, Liu FF, Zou LY, Su L, Liu SK, Zhou HH, Sun YY, Han AJ, Sun YF, Li S, Li J, Sun YB. Nickel oxide nanoparticles induced pulmonary fibrosis via TGF-1 activation in rats. Hum Exp Toxicol. 2017;36(8):802–12. PubMed
Nweton PE, Bolte HF, Daly IW, Pillsbury BD, Terrill JB, Drew RT, Bendyke R, Sheldon AW, Rubin LF. Subchronic and chronic inhalation toxicity of antimony trioxide in the rat. Fundam Appl Toxicol. 1994;22(4):561–76. PubMed
Zhu MT, Nie GJ, Meng H, Xia T, Nel A, Zhao YL. Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Acc Chem Res. 2013;46(3):622–31. PubMed PMC
Liu Y, Workalemahu B, Jiang XY. The Effects of Physicochemical Properties of Nanomaterials on Their Cellular Uptake In Vitro and In Vivo. Small, 13 (43),1701815. PubMed
Li RB, Wang X, Ji ZX, Sun BB, Zhang HY, Chang CH, Lin SJ, Meng H, Liao YP, Wang MY, Li ZX, Hwang AA, Song TB, Xu R, Yang Y, Zink JI, Nel AE, Xia T. Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano. 2013;7(3):2352–68. PubMed PMC
Wang X, Ji ZX, Chang CH, Zhang HY, Wang MY, Liao YP, Lin SJ, Meng H, Li RB, Sun BB, Winkle LV, Pinkerton KE, Zink JI, Xia T, Nel AE. Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small. 2013;10(2):385–98. PubMed PMC
Calutu IM, Smarandescu RA, Rascu A. Biomonitoring Exposure and Early Diagnosis in Silicosis: A Comprehensive Review of the Current Literature. Biomedicines. 2023;11(1):100. PubMed PMC
Rimal B, Greenberg AK, Rom WN. Basic pathogenetic mechanisms in sificosis: current understanding. Curr Opin Pulm Med. 2005;11(2):169–73. PubMed
Li RB, Ji ZX, Chang CH, Dunphy DR, Cai XM, Meng H, Zhang HY, Sun BB, Wang X, Dong JY, Lin SJ, Wang MY, Liao YP, Brinker CJ, Nel A, Xia T. Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design. ACS Nano. 2014;8(2):1771–83. PubMed PMC
Bhattacharya M, Ramachandran P. Immunology of human fibrosis. Nat Immunol. 2023;24:1423–33. PubMed
Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 2001;107(12):1529–36. PubMed PMC
Jain A, Irizarry-Caro RA, McDaniel MM, Chawla AS, Carroll KR, Overcast GR, Philip NH, Oberst A, Chervonsky AV, Katz JD, Pasare C. T cells instruct myeloid cells to produce inflammasome-independent IL-1β and cause autoimmunity. Nat Immunol. 2020;21(1):65–74. PubMed PMC
Wang HR, Wu J, Ma L, Bai YF, Liu J. The role of interleukin-1 family in fibrotic diseases. Cytokine. 2023;165:156161. PubMed
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587(7835):555–66. PubMed PMC
Konduru NV, Murdaugh KM, Sotiriou GA, Donaghey TC, Demokritou P, Brain JD, Molina RM. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol. 2014;11:44. PubMed PMC
Konduru NV, Molina RM, Swami A, Damiani F, Pyrgiotakis G, Lin P, Andreozzi P, Donaghey TC, Demokritou P, Krol S, Kreyling W, Brain JD. Protein corona: implications for nanoparticle interactions with pulmonary cells. Part Fibre Toxicol. 2017;14:42. PubMed PMC
Sager TM, Kommineni C, Castranova V. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol. 2008;5:17. PubMed PMC
Vooght VD, Vanoirbeek JAJ, Haenen S, Verbeken E, Nemery B, Peter HM, Hoet PHM. Oropharyngeal aspiration: An alternative route for challenging in a mouse model of chemical-induced asthma. Toxicology. 2009, 259 (1–2), 84 – 9. PubMed
Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010;10(269):136–47. PubMed
Antonini JM, Badding MA, Meighan TG, Keane M, Leonard SS, Roberts JR. Evaluation of the pulmonary toxicity of a fume generated from a nickel-, copper-based electrode to be used as a substitute in stainless steel welding. Environ Health Insights. 2014;8(Suppl 1):11–20. PubMed PMC
NIOSH. Appendix G. 1989 Air contaminants update project–exposure limits NOT in effect. 2015. http://www.cdc.gov/niosh/npg/nengapdxg.html. (accessed 11/25/2024).