• This record comes from PubMed

Using hyperspectral reflectance to detect changes in photosynthetic activity in Atractylodes chinensis leaves as a function of decreasing soil water content

. 2024 ; 62 (4) : 372-380. [epub] 20241205

Language English Country Czech Republic Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Application of hyperspectral reflectance technology to track changes in photosynthetic activity in Atractylodes chinensis (A. chinensis) remains underexplored. This study aimed to investigate the relationship between hyperspectral reflectance and photosynthetic activity in the leaves of A. chinensis in response to a decrease in soil water content. Results demonstrated that the reflectance in both the visible light and near-infrared bands increased in conjunction with reduced soil water content. The derived vegetable indices of photochemical reflection index (PRI) and the pigment-specific simple ratio of chlorophyll b (PSSRb) gradually decreased. In contrast, the normalized difference in water index (NWI) and water index (WI) increased. Moreover, significant correlations were observed between PRI, PSSRb, WI, and NWI and photosynthetic activity indices, namely photosynthetic rate and total performance index. Consequently, hyperspectral reflection represents a productive approach for evaluating the influence of water deficit on photosynthetic activity in A. chinensis leaves.

See more in PubMed

Asgari A., Hooshmand A., Broumand-Nasab S., Zivdar S.: Potential application of spectral indices for olive water status assessment in (semi-)arid regions: A case study in Khuzestan Province, Iran. – Plant Direct 7: e494, 2023. 10.1002/pld3.494 PubMed DOI PMC

Blackburn G.A.: Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. – Remote Sens. Environ. 66: 273-285, 1998. 10.1016/S0034-4257(98)00059-5 DOI

Borges C.V., Minatel I.O., Gomez-Gomez H.A., Lima G.P.P.: Medicinal plants: Influence of environmental factors on the content of secondary metabolites. – In: Ghorbanpour M., Varma A. (ed.): Medicinal Plants and Environmental Challenges. Pp. 259-277. Springer, Cham: 2017. 10.1007/978-3-319-68717-9_15 DOI

Buchaillot M.L., Soba D., Shu T. et al.: Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models. – Planta 255: 93, 2022. 10.1007/s00425-022-03867-6 PubMed DOI PMC

Burnett A.C., Serbin S.P., Davidson K.J. et al.: Detection of the metabolic response to drought stress using hyperspectral reflectance. – J. Exp. Bot. 72: 6474-6489, 2021. 10.1093/jxb/erab255 PubMed DOI

Ejaz I., Li W., Naseer M.A. et al.: Detection of combined frost and drought stress in wheat using hyperspectral and chlorophyll fluorescence imaging. – Environ. Technol. Innov. 30: 103051, 2023. 10.1016/j.eti.2023.103051 DOI

Estrada F., Flexas J., Araus J.L. et al.: Exploring plant responses to abiotic stress by contrasting spectral signature changes. – Front. Plant Sci. 13: 1026323, 2023. 10.3389/fpls.2022.1026323 PubMed DOI PMC

Flynn K.C., Witt T.W., Baath G.S. et al.: Hyperspectral reflectance and machine learning for multi-site monitoring of cotton growth. – Smart Agric. Technol. 9: 100536, 2024. 10.1016/j.atech.2024.100536 DOI

Gamon J.A., Peñuelas J., Field C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. – Remote Sens. Environ. 41: 35-44, 1992. 10.1016/0034-4257(92)90059-S DOI

Guha A., Sengupta D., Reddy A.R.: Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. – J. Photoch. Photobio. B 119: 71-83, 2013. 10.1016/j.jphotobiol.2012.12.006 PubMed DOI

Gupta A., Rico-Medina A., Caño-Delgado A.I.: The physiology of plant responses to drought. – Science 368: 266-269, 2020. 10.1126/science.aaz7614 PubMed DOI

Ilyas M., Nisar M., Khan N. et al.: Drought tolerance strategies in plants: A mechanistic approach. – J. Plant Growth Regul. 40: 926-944, 2021. 10.1007/s00344-020-10174-5 DOI

Jia Q., Liu Z., Guo C. et al.: Relationship between photosynthetic CO2 assimilation and chlorophyll fluorescence for winter wheat under water stress. – Plants-Basel 12: 3365, 2023. 10.3390/plants12193365 PubMed DOI PMC

Jia Y., Xiao W., Ye Y. et al.: Response of photosynthetic performance to drough duration and re-watering in maize. – Agronomy 10: 533, 2020. 10.3390/agronomy10040533 DOI

Kalisz A., Kornaś A., Skoczowski A. et al.: Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles. – BMC Plant Biol. 23: 329, 2023. 10.1186/s12870-023-04305-9 PubMed DOI PMC

Kanash E.V., Sinyavina N.G., Rusakov D.V. et al.: Morpho-physiological, chlorophyll fluorescence, and diffuse reflectance spectra characteristics of lettuce under the main macronutrient deficiency. – Horticulturae 9: 1185, 2023. 10.3390/horticulturae9111185 DOI

Lei H., Yue J., Yin X. et al.: HS-SPME coupled with GC–MS for elucidating differences between the volatile components in wild and cultivated Atractylodes chinensis. – Phytochem. Analysis 34: 317-328, 2023. 10.1002/pca.3210 PubMed DOI

Lei J., Tu Y., Xu J., Yu J.: Mechanisms of the traditional Chinese herb Atractylodes lancea against COVID-19 based on network pharmacology and molecular docking. – Wuhan Univ. J. Nat. Sci. 27: 349-360, 2022. 10.1051/wujns/2022274349 DOI

Li Y., Song H., Zhou L. et al.: Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field. – Agr. Water Manage. 211: 190-201, 2019. 10.1016/j.agwat.2018.09.050 DOI

Lima A.A., Santos I.S., Torres M.E.L. et al.: Drought and re-watering modify ethylene production and sensitivity, and are associated with coffee anthesis. – Environ. Exp. Bot. 181: 104289, 2021. 10.1016/j.envexpbot.2020.104289 DOI

Ma S., Sun C., Su W. et al.: Transcriptomic and physiological analysis of Atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis. – BMC Plant Biol. 24: 91, 2024. 10.1186/s12870-024-04780-8 PubMed DOI PMC

Ma Z., Liu G., Yang Z. et al.: Species differentiation and quality evaluation for Atractylodes medicinal plants by GC/MS coupled with chemometric analysis. – Chem. Biodivers. 20: e202300793, 2023. 10.1002/cbdv.202300793 PubMed DOI

Munné-Bosch S., Villadangos S.: Cheap, cost-effective, and quick stress biomarkers for drought stress detection and monitoring in plants. – Trends Plant Sci. 28: 527-536, 2023. 10.1016/j.tplants.2023.01.004 PubMed DOI

Nión M., Gándara J., Ross S. et al.: Photosynthesis adaptation to long- and short-term water restriction in commercial plantlets of Eucalyptus grandis and hybrids with Red Gums. – Trees 38: 537-547, 2024. 10.1007/s00468-024-02503-y DOI

Penuelas J., Pinol J., Ogaya R., Filella I.: Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). – Int. J. Remote Sens 18: 2869-2875, 1997. 10.1080/014311697217396 DOI

Poudel S., Vennam R.R., Shrestha A. et al.: Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. – Sci. Rep.-UK 13: 1277, 2023. 10.1038/s41598-023-28354-0 PubMed DOI PMC

Rapacz M., Wójcik-Jagła M., Fiust A. et al.: Genome-wide associations of chlorophyll fluorescence OJIP transient parameters connected with soil drought response in barley. – Front. Plant Sci. 10: 78, 2019. 10.3389/fpls.2019.00078 PubMed DOI PMC

Raypah M. E., Nasru M.I.M., Nazim M.H.H. et al.: Reflectance spectra for identifying stress in different parts of leaf: a case study on oil palm seedlings. – Int. J. Remote Sens. 45: 954-980, 2024. 10.1080/01431161.2024.2305626 DOI

Rusakov D.V., Kanash E.V.: Spectral characteristics of leaves diffuse reflection in conditions of soil drought: a study of soft spring wheat cultivars of different drought resistance. – Plant Soil Environ. 68: 137-145, 2022. 10.17221/483/2021-pse DOI

Singh R.: Spectral reflectance and fluorescence is a rapid, non-destructive tool for drought tolerance monitoring in Withania somnifera (L.) Dunal. – Protoplasma 260: 1421-1435, 2023. 10.1007/s00709-023-01859-1 PubMed DOI

Song K.E., Hong S.S., Hwang H.R. et al.: Effect analysis of hydrogen peroxide using hyperspectral reflectance in sorghum [Sorghum bicolor (L.) Moench] under drought stress. – Plants-Basel 12: 2958, 2023. 10.3390/plants12162958 PubMed DOI PMC

Tankari M., Wang C., Ma H. et al.: Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. – Agr. Water Manage. 245: 106565, 2021. 10.1016/j.agwat.2020.106565 DOI

Tominaga J., Kawamitsu Y.: Combined leaf gas-exchange system for model assessment. – J. Exp. Bot. 75: 2982-2993, 2024. 10.1093/jxb/erae081 PubMed DOI

Tsimilli-Michael M.: Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. – Photosynthetica 58: 275-292, 2020. 10.32615/ps.2019.150 DOI

Wang Y., Xue Z., Yang Y. et al.: [Effects of climate change on the distribution pattern of the suitable growing region for Atractylodes chinensis (DC.) Koidz. in Yanshan area.] – Chin. J. Inform. Tradit. Chin. Med. 30: 1-7, 2023. [In Chinese] 10.19879/j.cnki.1005-5304.202301167 DOI

Xia Y.-G., Yang B.-Y., Wang Q.-H. et al.: Species classification and quality assessment of Cangzhu (Atractylodis Rhizoma) by high-performance liquid chromatography and chemometric methods. – J. Anal. Methods Chem. 2013: 497532, 2013. 10.1155/2013/497532 PubMed DOI PMC

Xu J., Chen D., Liu C. et al.: Structural characterization and anti-tumor effects of an inulin-type fructan from Atractylodes chinensis. – Int. J. Biol. Macromol. 82: 765-771, 2016. 10.1016/j.ijbiomac.2015.10.082 PubMed DOI

Xue Z., Gao H., Zhao S.: Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants. – Environ. Sci. Pollut. Res. 21: 4656-4664, 2014. 10.1007/s11356-013-2433-z PubMed DOI

Xue Z.C., Wang Y., Liu J.: Systematic salt tolerance-related physiological mechanisms of wild soybean and their role in the photosynthetic activity and Na+ distribution of grafted soybean plants. – Photosynthetica 60: 400-407, 2022. 10.32615/ps.2022.030 PubMed DOI PMC

Zhang A., Liu M., Gu W. et al.: Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of Atractylodes lancea. – BMC Plant Biol. 21: 293, 2021b. 10.1186/s12870-021-03048-9 PubMed DOI PMC

Zhang W., Bai Q., Cui G. et al.: Recent progress and ongoing challenges in Rhizoma atractylodis research: biogeography, biosynthesis, quality formation and control. – Med. Plant Biol. 2: 19, 2023. 10.48130/mpb-2023-0019 DOI

Zhang W., Zhao Z., Chang L. et al.: Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. – J. Ethnopharmacol. 266: 113415, 2021a. 10.1016/j.jep.2020.113415 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...