Using hyperspectral reflectance to detect changes in photosynthetic activity in Atractylodes chinensis leaves as a function of decreasing soil water content
Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
39811707
PubMed Central
PMC11726290
DOI
10.32615/ps.2024.040
PII: PS62372
Knihovny.cz E-resources
- Keywords
- Atractylodes chinensis, hyperspectral reflectance, photosynthesis, vegetable indices, water stress,
- MeSH
- Atractylodes * physiology metabolism MeSH
- Chlorophyll metabolism MeSH
- Photosynthesis * physiology MeSH
- Plant Leaves * physiology metabolism MeSH
- Soil * chemistry MeSH
- Water * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chlorophyll MeSH
- chlorophyll b MeSH Browser
- Soil * MeSH
- Water * MeSH
Application of hyperspectral reflectance technology to track changes in photosynthetic activity in Atractylodes chinensis (A. chinensis) remains underexplored. This study aimed to investigate the relationship between hyperspectral reflectance and photosynthetic activity in the leaves of A. chinensis in response to a decrease in soil water content. Results demonstrated that the reflectance in both the visible light and near-infrared bands increased in conjunction with reduced soil water content. The derived vegetable indices of photochemical reflection index (PRI) and the pigment-specific simple ratio of chlorophyll b (PSSRb) gradually decreased. In contrast, the normalized difference in water index (NWI) and water index (WI) increased. Moreover, significant correlations were observed between PRI, PSSRb, WI, and NWI and photosynthetic activity indices, namely photosynthetic rate and total performance index. Consequently, hyperspectral reflection represents a productive approach for evaluating the influence of water deficit on photosynthetic activity in A. chinensis leaves.
Chengde Bijiashan Ecological Agriculture Technology Development Co Ltd 067000 Chengde Hebei China
College of Teacher Education Hebei Minzu Normal University 067000 Chengde Hebei China
Laboratory Management Center Hebei Minzu Normal University 067000 Chengde Hebei China
See more in PubMed
Asgari A., Hooshmand A., Broumand-Nasab S., Zivdar S.: Potential application of spectral indices for olive water status assessment in (semi-)arid regions: A case study in Khuzestan Province, Iran. – Plant Direct 7: e494, 2023. 10.1002/pld3.494 PubMed DOI PMC
Blackburn G.A.: Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. – Remote Sens. Environ. 66: 273-285, 1998. 10.1016/S0034-4257(98)00059-5 DOI
Borges C.V., Minatel I.O., Gomez-Gomez H.A., Lima G.P.P.: Medicinal plants: Influence of environmental factors on the content of secondary metabolites. – In: Ghorbanpour M., Varma A. (ed.): Medicinal Plants and Environmental Challenges. Pp. 259-277. Springer, Cham: 2017. 10.1007/978-3-319-68717-9_15 DOI
Buchaillot M.L., Soba D., Shu T. et al.: Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models. – Planta 255: 93, 2022. 10.1007/s00425-022-03867-6 PubMed DOI PMC
Burnett A.C., Serbin S.P., Davidson K.J. et al.: Detection of the metabolic response to drought stress using hyperspectral reflectance. – J. Exp. Bot. 72: 6474-6489, 2021. 10.1093/jxb/erab255 PubMed DOI
Ejaz I., Li W., Naseer M.A. et al.: Detection of combined frost and drought stress in wheat using hyperspectral and chlorophyll fluorescence imaging. – Environ. Technol. Innov. 30: 103051, 2023. 10.1016/j.eti.2023.103051 DOI
Estrada F., Flexas J., Araus J.L. et al.: Exploring plant responses to abiotic stress by contrasting spectral signature changes. – Front. Plant Sci. 13: 1026323, 2023. 10.3389/fpls.2022.1026323 PubMed DOI PMC
Flynn K.C., Witt T.W., Baath G.S. et al.: Hyperspectral reflectance and machine learning for multi-site monitoring of cotton growth. – Smart Agric. Technol. 9: 100536, 2024. 10.1016/j.atech.2024.100536 DOI
Gamon J.A., Peñuelas J., Field C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. – Remote Sens. Environ. 41: 35-44, 1992. 10.1016/0034-4257(92)90059-S DOI
Guha A., Sengupta D., Reddy A.R.: Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. – J. Photoch. Photobio. B 119: 71-83, 2013. 10.1016/j.jphotobiol.2012.12.006 PubMed DOI
Gupta A., Rico-Medina A., Caño-Delgado A.I.: The physiology of plant responses to drought. – Science 368: 266-269, 2020. 10.1126/science.aaz7614 PubMed DOI
Ilyas M., Nisar M., Khan N. et al.: Drought tolerance strategies in plants: A mechanistic approach. – J. Plant Growth Regul. 40: 926-944, 2021. 10.1007/s00344-020-10174-5 DOI
Jia Q., Liu Z., Guo C. et al.: Relationship between photosynthetic CO2 assimilation and chlorophyll fluorescence for winter wheat under water stress. – Plants-Basel 12: 3365, 2023. 10.3390/plants12193365 PubMed DOI PMC
Jia Y., Xiao W., Ye Y. et al.: Response of photosynthetic performance to drough duration and re-watering in maize. – Agronomy 10: 533, 2020. 10.3390/agronomy10040533 DOI
Kalisz A., Kornaś A., Skoczowski A. et al.: Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles. – BMC Plant Biol. 23: 329, 2023. 10.1186/s12870-023-04305-9 PubMed DOI PMC
Kanash E.V., Sinyavina N.G., Rusakov D.V. et al.: Morpho-physiological, chlorophyll fluorescence, and diffuse reflectance spectra characteristics of lettuce under the main macronutrient deficiency. – Horticulturae 9: 1185, 2023. 10.3390/horticulturae9111185 DOI
Lei H., Yue J., Yin X. et al.: HS-SPME coupled with GC–MS for elucidating differences between the volatile components in wild and cultivated Atractylodes chinensis. – Phytochem. Analysis 34: 317-328, 2023. 10.1002/pca.3210 PubMed DOI
Lei J., Tu Y., Xu J., Yu J.: Mechanisms of the traditional Chinese herb Atractylodes lancea against COVID-19 based on network pharmacology and molecular docking. – Wuhan Univ. J. Nat. Sci. 27: 349-360, 2022. 10.1051/wujns/2022274349 DOI
Li Y., Song H., Zhou L. et al.: Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field. – Agr. Water Manage. 211: 190-201, 2019. 10.1016/j.agwat.2018.09.050 DOI
Lima A.A., Santos I.S., Torres M.E.L. et al.: Drought and re-watering modify ethylene production and sensitivity, and are associated with coffee anthesis. – Environ. Exp. Bot. 181: 104289, 2021. 10.1016/j.envexpbot.2020.104289 DOI
Ma S., Sun C., Su W. et al.: Transcriptomic and physiological analysis of Atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis. – BMC Plant Biol. 24: 91, 2024. 10.1186/s12870-024-04780-8 PubMed DOI PMC
Ma Z., Liu G., Yang Z. et al.: Species differentiation and quality evaluation for Atractylodes medicinal plants by GC/MS coupled with chemometric analysis. – Chem. Biodivers. 20: e202300793, 2023. 10.1002/cbdv.202300793 PubMed DOI
Munné-Bosch S., Villadangos S.: Cheap, cost-effective, and quick stress biomarkers for drought stress detection and monitoring in plants. – Trends Plant Sci. 28: 527-536, 2023. 10.1016/j.tplants.2023.01.004 PubMed DOI
Nión M., Gándara J., Ross S. et al.: Photosynthesis adaptation to long- and short-term water restriction in commercial plantlets of Eucalyptus grandis and hybrids with Red Gums. – Trees 38: 537-547, 2024. 10.1007/s00468-024-02503-y DOI
Penuelas J., Pinol J., Ogaya R., Filella I.: Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). – Int. J. Remote Sens 18: 2869-2875, 1997. 10.1080/014311697217396 DOI
Poudel S., Vennam R.R., Shrestha A. et al.: Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. – Sci. Rep.-UK 13: 1277, 2023. 10.1038/s41598-023-28354-0 PubMed DOI PMC
Rapacz M., Wójcik-Jagła M., Fiust A. et al.: Genome-wide associations of chlorophyll fluorescence OJIP transient parameters connected with soil drought response in barley. – Front. Plant Sci. 10: 78, 2019. 10.3389/fpls.2019.00078 PubMed DOI PMC
Raypah M. E., Nasru M.I.M., Nazim M.H.H. et al.: Reflectance spectra for identifying stress in different parts of leaf: a case study on oil palm seedlings. – Int. J. Remote Sens. 45: 954-980, 2024. 10.1080/01431161.2024.2305626 DOI
Rusakov D.V., Kanash E.V.: Spectral characteristics of leaves diffuse reflection in conditions of soil drought: a study of soft spring wheat cultivars of different drought resistance. – Plant Soil Environ. 68: 137-145, 2022. 10.17221/483/2021-pse DOI
Singh R.: Spectral reflectance and fluorescence is a rapid, non-destructive tool for drought tolerance monitoring in Withania somnifera (L.) Dunal. – Protoplasma 260: 1421-1435, 2023. 10.1007/s00709-023-01859-1 PubMed DOI
Song K.E., Hong S.S., Hwang H.R. et al.: Effect analysis of hydrogen peroxide using hyperspectral reflectance in sorghum [Sorghum bicolor (L.) Moench] under drought stress. – Plants-Basel 12: 2958, 2023. 10.3390/plants12162958 PubMed DOI PMC
Tankari M., Wang C., Ma H. et al.: Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. – Agr. Water Manage. 245: 106565, 2021. 10.1016/j.agwat.2020.106565 DOI
Tominaga J., Kawamitsu Y.: Combined leaf gas-exchange system for model assessment. – J. Exp. Bot. 75: 2982-2993, 2024. 10.1093/jxb/erae081 PubMed DOI
Tsimilli-Michael M.: Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. – Photosynthetica 58: 275-292, 2020. 10.32615/ps.2019.150 DOI
Wang Y., Xue Z., Yang Y. et al.: [Effects of climate change on the distribution pattern of the suitable growing region for Atractylodes chinensis (DC.) Koidz. in Yanshan area.] – Chin. J. Inform. Tradit. Chin. Med. 30: 1-7, 2023. [In Chinese] 10.19879/j.cnki.1005-5304.202301167 DOI
Xia Y.-G., Yang B.-Y., Wang Q.-H. et al.: Species classification and quality assessment of Cangzhu (Atractylodis Rhizoma) by high-performance liquid chromatography and chemometric methods. – J. Anal. Methods Chem. 2013: 497532, 2013. 10.1155/2013/497532 PubMed DOI PMC
Xu J., Chen D., Liu C. et al.: Structural characterization and anti-tumor effects of an inulin-type fructan from Atractylodes chinensis. – Int. J. Biol. Macromol. 82: 765-771, 2016. 10.1016/j.ijbiomac.2015.10.082 PubMed DOI
Xue Z., Gao H., Zhao S.: Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants. – Environ. Sci. Pollut. Res. 21: 4656-4664, 2014. 10.1007/s11356-013-2433-z PubMed DOI
Xue Z.C., Wang Y., Liu J.: Systematic salt tolerance-related physiological mechanisms of wild soybean and their role in the photosynthetic activity and Na+ distribution of grafted soybean plants. – Photosynthetica 60: 400-407, 2022. 10.32615/ps.2022.030 PubMed DOI PMC
Zhang A., Liu M., Gu W. et al.: Effect of drought on photosynthesis, total antioxidant capacity, bioactive component accumulation, and the transcriptome of Atractylodes lancea. – BMC Plant Biol. 21: 293, 2021b. 10.1186/s12870-021-03048-9 PubMed DOI PMC
Zhang W., Bai Q., Cui G. et al.: Recent progress and ongoing challenges in Rhizoma atractylodis research: biogeography, biosynthesis, quality formation and control. – Med. Plant Biol. 2: 19, 2023. 10.48130/mpb-2023-0019 DOI
Zhang W., Zhao Z., Chang L. et al.: Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. – J. Ethnopharmacol. 266: 113415, 2021a. 10.1016/j.jep.2020.113415 PubMed DOI PMC