Chloroplast antioxidant reactions associated with zinc-alleviating effects on iron toxicity in wheat seedlings
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39811711
PubMed Central
PMC11726291
DOI
10.32615/ps.2024.038
PII: PS62381
Knihovny.cz E-zdroje
- Klíčová slova
- Fe stress, Zn treatment, antioxidant reaction, chloroplast, wheat,
- MeSH
- antioxidancia * metabolismus MeSH
- chloroplasty * účinky léků metabolismus MeSH
- fotosyntéza * účinky léků MeSH
- listy rostlin účinky léků metabolismus MeSH
- malondialdehyd metabolismus MeSH
- pšenice * účinky léků metabolismus růst a vývoj MeSH
- semenáček * účinky léků metabolismus růst a vývoj MeSH
- superoxiddismutasa metabolismus MeSH
- železo * metabolismus MeSH
- zinek * toxicita metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- malondialdehyd MeSH
- superoxiddismutasa MeSH
- železo * MeSH
- zinek * MeSH
This study aimed to explore the mechanism by which Zn retards Fe toxicity by analyzing the morphological, photosynthetic, and chloroplast physiological parameters of wheat seedlings treated with either single or combined Zn and Fe. Different behavior of the seedlings was observed under untreated and treated conditions. The most discriminating quantitative traits were associated with leaf area, biomass dry mass and fresh mass, net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, transpiration rate of seedlings, Hill reaction, Mg2+-ATPase and Ca2+-ATPase activities, malondialdehyde and O2 ·- contents, and glutathione reductase, ascorbate peroxidase, peroxidase, and superoxide dismutase activities and their gene expression in the seedling chloroplast. The obtained findings suggest the important function of an appropriate Zn concentration in preventing Fe toxicity. Therefore, a thorough evaluation of the effects of Zn on Fe-stressed plant growth is beneficial for sustainable agriculture.
Zobrazit více v PubMed
Adil M.F., Sehar S., Han Z.G. et al.: Zinc alleviates cadmium toxicity by modulating photosynthesis, ROS homeostasis, and cation flux kinetics in rice. – Environ. Pollut. 265: 114979, 2020. 10.1016/j.envpol.2020.114979 PubMed DOI
Anjum S.A., Tanveer M., Hussain S. et al.: Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. – Environ. Sci. Pollut. Res. 23: 11864-11875, 2016. 10.1007/s11356-016-6382-1 PubMed DOI
Bejaoui F., Salas J.J., Nouairi I. et al.: Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. – J. Plant Physiol. 198: 32-38, 2016. 10.1016/j.jplph.2016.03.018 PubMed DOI
Briat J.-F., Dubos C., Gaymard F.: Iron nutrition, biomass production, and plant product quality. – Trends Plant Sci. 20: 33-40, 2015. 10.1016/j.tplants.2014.07.005 PubMed DOI
Calgaroto N.S., Cargnelutti D., Rossato L.V. et al.: Zinc alleviates mercury-induced oxidative stress in Pfaffia glomerata (Spreng.) Pedersen. – BioMetals 24: 959-971, 2011. 10.1007/s10534-011-9457-y PubMed DOI
Cao B.L., Ma Q., Zhao Q. et al.: Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. – Sci. Hortic.-Amsterdam 194: 53-62, 2015. 10.1016/j.scienta.2015.07.037 DOI
Chatterjee A.K., Mandal B., Mandal L.N.: Interaction of nitrogen and potassium with zinc in submerged soil and lowland rice. – J. Indian Soc. Soil Sci. 44: 792-794, 1996. https://eurekamag.com/research/031/981/031981364.php
Chen H.-C., Zhang S.-L., Wu K.-J. et al.: The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. under Cd stress. – Ecotox. Environ. Safe. 187: 109790, 2020. 10.1016/j.ecoenv.2019.109790 PubMed DOI
Ciarkowska A., Ostrowski M., Jakubowska A.: Abiotic stress and phytohormones affect enzymic activity of 1-O-(indole-3-acetyl)-β-D-glucose: myo-inositol indoleacetyl transferase from rice (Oryza sativa). – J. Plant Physiol. 205: 93-96, 2016. 10.1016/j.jplph.2016.07.018 PubMed DOI
Dai H., Shan C.: Effects of lanthanum on the antioxidant capacity of chloroplasts and chlorophyll fluorescence parameters of maize seedlings under chromium stress. – Photosynthetica 57: 27-31, 2019. 10.32615/ps.2019.015 DOI
Das S., Biswas A.K.: Comparative study of silicon and selenium to modulate chloroplast pigments levels, Hill activity, photosynthetic parameters and carbohydrate metabolism under arsenic stress in rice seedlings. – Environ Sci. Pollut. Res. 29: 19508-19529, 2022. 10.1007/s11356-021-16836-5 PubMed DOI
Delias D.S., Da-Silva C.J., Martins A.C. et al.: Iron toxicity increases oxidative stress and impairs mineral accumulation and leaf gas exchange in soybean plants during hypoxia. – Environ. Sci. Pollut. Res. 29: 22427-22438, 2022. 10.1007/s11356-021-17397-3 PubMed DOI
Ding F., Wang M., Zhang S.: Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants. – Sci. Hortic.-Amsterdam 214: 27-33, 2017. 10.1016/j.scienta.2016.11.010 DOI
Du J., Shu S., Shao Q.S. et al.: Mitigative effects of spermidine on photosynthesis and carbon-nitrogen balance of cucumber seedlings under Ca(NO3)2 stress. – J. Plant Res. 129: 79-91, 2016. 10.1007/s10265-015-0762-3 PubMed DOI
Du J., Zeng J., Ming X.Y. et al.: The presence of zinc reduced cadmium uptake and translocation in Cosmos bipinnatus seedlings under cadmium/zinc combined stress. – Plant Physiol. Biochem. 151: 223-232, 2020. 10.1016/j.plaphy.2020.03.019 PubMed DOI
Du W., Yang J.Y., Peng Q.Q. et al.: Comparison study of Zn nanoparticles and Zn sulphate on wheat growth: from toxicity and Zn biofortification. – Chemosphere 227: 109-116, 2019. 10.1016/j.chemosphere.2019.03.168 PubMed DOI
Duan Y.P., Zhang Y., Zhao B.: Lead, zinc tolerance mechanism and phytoremediation potential of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. and ethylenediaminetetraacetic acid effect. – Environ. Sci. Pollut. Res. 29: 41329-41343, 2022. 10.1007/s11356-021-18243-2 PubMed DOI
Elbasan F., Arikan B., Ozfidan-Konakci C. et al.: Hesperidin and chlorogenic acid mitigate arsenic-induced oxidative stress via redox regulation, photosystems-related gene expression, and antioxidant efficiency in the chloroplasts of Zea mays. – Plant Physiol. Biochem. 208: 108445, 2024. 10.1016/j.plaphy.2024.108445 PubMed DOI
Erinle O.K., Jiang Z., Ma B.B. et al.: Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts. – Ecotox. Environ. Safe. 132: 403-412, 2016. 10.1016/j.ecoenv.2016.06.035 PubMed DOI
Fan W.-J., Feng Y.-X., Li Y.-H. et al.: Unraveling genes promoting ROS metabolism in subcellular organelles of Oryza sativa in response to trivalent and hexavalent chromium. – Sci. Total Environ. 744: 140951, 2020. 10.1016/j.scitotenv.2020.140951 PubMed DOI
Feng K., Lu J., Chen Y. et al.: The coordinated alterations in antioxidative enzymes, PeCu/ZnSOD and PeAPX2 expression facilitated in vitro Populus euphratica resistance to salinity stress. – Plant Cell Tiss. Org. Cult. 150: 399-416, 2022. 10.1007/s11240-022-02292-7 DOI
Fu J., Wang Y.-F., Liu Z.-H. et al.: Trichoderma asperellum alleviates the effects of saline–alkaline stress on maize seedlings via the regulation of photosynthesis and nitrogen metabolism. – Plant Growth Regul. 85: 363-374, 2018. 10.1007/s10725-018-0386-4 DOI
Gindri R.G., Navarro B.B., da Cruz Dias P.V. et al.: Physiological responses of rice (Oryza sativa L.) oszip7 loss-of-function plants exposed to varying Zn concentrations. – Physiol. Mol. Biol. Pla. 26: 1349-1359, 2020. 10.1007/s12298-020-00824-z PubMed DOI PMC
Hasanuzzaman M., Hossain M.A., Fujita M. et al.: Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. – Biol. Trace Elem. Res. 149: 248-261, 2012. 10.1007/s12011-012-9419-4 PubMed DOI
Hu C.-H., Zheng Y., Tong C.-L., Zhang D.-J.: Effects of exogenous melatonin on plant growth, root hormones and photosynthetic characteristics of trifoliate orange subjected to salt stress. – Plant Growth Regul. 97: 551-558, 2022. 10.1007/s10725-022-00814-z DOI
Hu H., Wang L., Li Y. et al.: Insight into mechanism of lanthanum (III) induced damage to plant photosynthesis. – Ecotox. Environ. Safe. 127: 43-50, 2016. 10.1016/j.ecoenv.2016.01.008 PubMed DOI
Huang H., Liu X.Q., Qu C.H. et al.: Influences of calcium deficiency and cerium on the conversion efficiency of light energy of spinach. – BioMetals 21: 553-561, 2008. 10.1007/s10534-008-9141-z PubMed DOI
Kang J.J., Zhao W.Z., Zheng Y. et al.: Calcium chloride improves photosynthesis and water status in the C4 succulent xerophyte Haloxylon ammodendron under water deficit. – Plant Growth Regul. 82: 467-478, 2017. 10.1007/s10725-017-0273-4 DOI
Kaur N., Sharma I., Kirat K., Pati P.K.: Detection of reactive oxygen species in Oryza sativa L. (rice). – Bio-protocol 6: e2061, 2016. 10.21769/BioProtoc.2061 DOI
Kroh G.E., Pilon M.: Regulation of iron homeostasis and use in chloroplasts. – Int. J. Mol. Sci. 21: 3395, 2020. 10.3390/ijms21093395 PubMed DOI PMC
Krohling C.A., Eutrópio F.J., Bertolazi A.A. et al.: Ecophysiology of iron homeostasis in plants. – Soil Sci. Plant Nutr. 62: 39-47, 2016. 10.1080/00380768.2015.1123116 DOI
Li M.P., Kim C.H.: Chloroplast ROS and stress signaling. – Plant Commun. 3: 100264, 2022. 10.1016/j.xplc.2021.100264 PubMed DOI PMC
Li S.-P., Zeng L.-S., Su Z.-L.: Wheat growth, photosynthesis and physiological characteristics under different soil Zn levels. – J. Integr. Agr. 21: 1927-1940, 2022. 10.1016/S2095-3119(21)63643-2 DOI
Li X., Ma H., Jia P. et al.: Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. – Ecotox. Environ. Safe. 86: 47-53, 2012. 10.1016/j.ecoenv.2012.09.010 PubMed DOI
Ma T., Duan X.H., Yang Y.Y. et al.: Zn-alleviating effects on Fe-induced phytotoxicity in roots of Triticum aestivum. – Biol. Plantarum 61: 733-740, 2017. 10.1007/s10535-017-0720-0 DOI
Marschner P.: Marschner's Mineral Nutrition of Higher Plants. 3rd Edition. Pp. 672. Academic Press, Amsterdam: 2012. 10.1016/C2009-0-63043-9 DOI
Mateos-Naranjo E., Andrades-Moreno L., Cambrollé J., Perez-Martin A.: Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: ecotoxicological implications. – Ecotox. Environ. Safe. 90: 136-142, 2013. 10.1016/j.ecoenv.2012.12.020 PubMed DOI
Mira M.M., Asmundson B., Renault S. et al.: Suppression of the soybean (Glycine max) Phytoglobin GmPgb1 improves tolerance to iron stress. – Acta Physiol. Plant. 43: 147, 2021. 10.1007/s11738-021-03315-0 DOI
Müller B.: Iron transport mechanisms and their evolution focusing on chloroplasts. – J. Plant Physiol. 288: 154059, 2023. 10.1016/j.jplph.2023.154059 PubMed DOI
Omoto E., Nagao H., Taniguchi M., Miyake H.: Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity. – Physiol. Plantarum 149: 1-12, 2013. 10.1111/ppl.12017 PubMed DOI
Romanowska E., Drożak A., Pokorska B. et al.: Organization and activity of photosystems in the mesophyll and bundle sheath chloroplasts of maize. – J. Plant Physiol. 163: 607-618, 2006. 10.1016/j.jplph.2005.06.007 PubMed DOI
Sarwar N., Ishaq W., Farid G. et al.: Zinc–cadmium interactions: Impact on wheat physiology and mineral acquisition. – Ecotox. Environ. Safe. 122: 528-536, 2015. 10.1016/j.ecoenv.2015.09.011 PubMed DOI
Sharma P., Chouhan R., Bakshi P. et al.: Amelioration of chromium-induced oxidative stress by combined treatment of selected plant-growth-promoting rhizobacteria and earthworms via modulating the expression of genes related to reactive oxygen species metabolism in Brassica juncea. – Front. Microbiol. 13: 802512, 2022. 10.3389/FMICB.2022.802512 PubMed DOI PMC
Shu S., Yuan L.-Y., Guo S.-R. et al.: Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. – Plant Physiol. Biochem. 63: 209-216, 2013. 10.1016/j.plaphy.2012.11.028 PubMed DOI
Tisarum R., Rika R., Pipatsitee P. et al.: Iron (Fe) toxicity, uptake, translocation, and physio-morphological responses in Catharanthus roseus. – Physiol. Mol. Biol. Pla. 29: 1289-1299, 2023. 10.1007/s12298-023-01379-5 PubMed DOI PMC
van Oort P.A.J.: Mapping abiotic stresses for rice in Africa: Drought, cold, iron toxicity, salinity and sodicity. – Field Crop. Res. 219: 55-75, 2018. 10.1016/j.fcr.2018.01.016 PubMed DOI PMC
Wang G.P., Zhang X.Y., Li F. et al.: Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. – Photosynthetica 48: 117-126, 2010. 10.1007/s11099-010-0016-5 DOI
Wang J., Zhong X., Zhu K. et al.: Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). – Environ. Sci. Pollut. Res. 25: 19012-19027, 2018. 10.1007/s11356-018-2105-0 PubMed DOI
Wang J.H., Moeen-ud-din M., Yang S.H.: Dose-dependent responses of Arabidopsis thaliana to Zn are mediated by auxin homeostasis and transport. – Environ. Exp. Bot. 189: 104554, 2021. 10.1016/j.envexpbot.2021.104554 DOI
Wu C., Dun Y., Zhang Z.J. et al.: Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. – Ecotox. Environ. Safe. 190: 110091, 2019. 10.1016/j.ecoenv.2019.110091 PubMed DOI
Wu J., Shu S., Li C. et al.: Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. – Plant Physiol. Biochem. 128: 152-162, 2018. 10.1016/j.plaphy.2018.05.002 PubMed DOI
Wu X., Liu C., Qu C.X. et al.: Effects of lead on activities of photochemical reaction and key enzymes of carbon assimilation in spinach chloroplast. – Biol. Trace Elem. Res. 126: 269-279, 2008. 10.1007/s12011-008-8196-6 PubMed DOI
Yang H.Y., Shi G.X., Xu Q.S., Wang H.X.: Cadmium effects on mineral nutrition and stress related indices in Potamogeton crispus. – Russ. J. Plant Physiol. 58: 253-260, 2011. 10.1134/S1021443711020245 DOI
Yang Y.L., Xu Y.L., Li J.M. et al.: [Comparison of photosynthetic characteristics of wheat seedlings under Zn and Fe treatments alone or in combination.] – J. Lanzhou Univ. (Nat. Sci.) 57: 344-352, 2021. [In Chinese] 10.13885/j.issn.0455-2059.2021.03.009 DOI
Zhang C.Y., He Q., Wang M.H. et al.: Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis). – Ecotox. Environ. Safe. 190: 110090, 2020a. 10.1016/j.ecoenv.2019.110090 PubMed DOI
Zhang G.-H., Xu Q., Zhu X.-D. et al.: SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. – Plant Cell 21: 719-735, 2009. 10.1105/tpc.108.061457 PubMed DOI PMC
Zhang H.H., Li X., Xu Z.S. et al.: Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. – Ecotox. Environ. Safe. 195: 110469, 2020b. 10.1016/j.ecoenv.2020.110469 PubMed DOI
Zhang Z., Chang X.X., Zhang L. et al.: Spermidine application enhances tomato seedling tolerance to salinity-alkalinity stress by modifying chloroplast antioxidant systems. – Russ. J. Plant Physiol. 63: 461-468, 2016. 10.1134/S102144371604018X DOI
Zhou Y., Diao M., Cui J.-X. et al.: Exogenous GSH protects tomatoes against salt stress by modulating photosystem II efficiency, absorbed light allocation and H2O2-scavenging system in chloroplasts. – J. Integr. Agr. 17: 2257-2272, 2018. 10.1016/s2095-3119(18)62068-4 DOI