Impact of exogenous rhamnolipids on plant photosynthesis and biochemical parameters under prolonged heat stress

. 2024 ; 62 (4) : 393-405. [epub] 20241217

Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39811712

High temperatures severely affect plant growth and development leading to major yield losses. These temperatures are expected to increase further due to global warming, with longer and more frequent heat waves. Rhamnolipids (RLs) are known to protect several plants against various pathogens. To date, how RLs act under abiotic stresses is unexplored. In this study, we aimed to investigate whether RLs could modify Arabidopsis thaliana physiology during prolonged heat stress. Measurement of leaf gas exchange and chlorophyll fluorescence showed that heat stress reduces photosynthetic rate through stomatal limitation and reduction of photosystem II yield. Our study reported decreased chlorophyll content and accumulation of soluble sugars and proline in response to heat stress. RLs were shown to have no detrimental effect on photosynthesis and carbohydrate metabolism in all conditions. These results extend the knowledge of plant responses to prolonged heat stress.

Zobrazit více v PubMed

Abdelrahman M., Ishii T., El-Sayed M., Tran L.-S.P.: Heat sensing and lipid reprograming as a signaling switch for heat stress responses in wheat. – Plant Cell Physiol. 61: 1399-1407, 2020. 10.1093/pcp/pcaa072 PubMed DOI

Akram M.A., Den N.Z.U., Abbas M.M. et al.: Multifarious role of osmolytes in plants: signaling and defense. – J. Soil Sci. Plant Physiol. 6: 172, 2024. https://www.researchgate.net/publication/378075877_Multifarious_role_of_osmolytes_in_plants_Signaling_and_Defense

Alagoz S.M., Lajayer B.A., Ghorbanpour M.: Proline and soluble carbohydrates biosynthesis and their roles in plants under abiotic stresses. – In: Ghorbanpour M., Shahid M.A. (ed.): Plant Stress Mitigators: Types, Techniques and Functions. Pp. 169-185. Academic Press, London: 2023. 10.1016/B978-0-323-89871-3.00027-6 DOI

Ali M.M., Shafique M.W., Gull S. et al.: Alleviation of heat stress in tomato by exogenous application of sulfur. – Horticulturae 7: 21, 2021. 10.3390/horticulturae7020021 DOI

Anderson C.M., Mattoon E.M., Zhang N. et al.: High light and temperature reduce photosynthetic efficiency through different mechanisms in the C4 model Setaria viridis. – Commun. Biol. 4: 1092, 2021. 10.1038/s42003-021-02576-2 PubMed DOI PMC

Anjum N.A., Thangavel P., Rasheed F. et al.: Osmolytes: Efficient oxidative stress-busters in plants. – In: Ansari M.W., Singh A.K., Tuteja N. (ed.): Global Climate Change and Plant Stress Management. Pp. 399-409. John Wiley & Sons, Hoboken: 2023. 10.1002/9781119858553.ch27 DOI

Canal M.V., Mansilla N., Gras D.E. et al.: Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy-deficient conditions. – New Phytol. 241: 2039-2058, 2024. 10.1111/nph.19506 PubMed DOI

Carreiras J., Cruz-Silva A., Fonseca B. et al.: Improving grapevine heat stress resilience with marine plant growth-promoting rhizobacteria consortia. – Microorganisms 11: 856, 2023. 10.3390/microorganisms11040856 PubMed DOI PMC

Cha J.-Y., Kang S.-H., Ali I. et al.: Humic acid enhances heat stress tolerance via transcriptional activation of Heat-Shock Proteins in Arabidopsis. – Sci. Rep.-UK 10: 15042, 2020. 10.1038/s41598-020-71701-8 PubMed DOI PMC

Chen Y.-E., Liu W.-J., Su Y.-Q. et al.: Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. – Physiol. Plantarum 158: 225-235, 2016. 10.1111/ppl.12438 PubMed DOI

Chen Z., Chen C., Yang Y. et al.: Rhamnolipids supplement in salinized soils improves cotton growth through ameliorating soil properties and modifying rhizosphere communities. – Appl. Soil Ecol. 194: 105174, 2024. 10.1016/j.apsoil.2023.105174 DOI

Cordelier S., Crouzet J., Gilliard G. et al.: Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help? – J. Exp. Bot. 73: 2765-2784, 2022. 10.1093/jxb/erab517 PubMed DOI

Crouzet J., Arguelles-Arias A., Dhondt-Cordelier S. et al.: Biosurfactants in plant protection against diseases: Rhamnolipids and lipopeptides case study. – Front. Bioeng. Biotechnol. 8: 1014, 2020. 10.3389/fbioe.2020.01014 PubMed DOI PMC

Demirevska-Kepova K., Holzer R., Simova-Stoilova L., Feller U.: Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. – Biol. Plantarum 49: 521-525, 2005. 10.1007/s10535-005-0045-2 DOI

Devi P., Awasthi R., Jha U. et al.: Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.). – Sci. Rep.-UK 13: 15450, 2023. 10.1038/s41598-023-42586-0 PubMed DOI PMC

Feng D., Jia X., Yan Z. et al.: Underlying mechanisms of exogenous substances involved in alleviating plant heat stress. – Plant Stress 10: 100288, 2023. 10.1016/j.stress.2023.100288 DOI

Fortunato S., Lasorella C., Dipierro N. et al.: Redox signaling in plant heat stress response. – Antioxidants 12: 605, 2023. 10.3390/antiox12030605 PubMed DOI PMC

Gautam H., Fatma M., Sehar Z. et al.: Exogenously-sourced ethylene positively modulates photosynthesis, carbohydrate metabolism, and antioxidant defense to enhance heat tolerance in rice. – Int. J. Mol. Sci. 23: 1031, 2022. 10.3390/ijms23031031 PubMed DOI PMC

Godínez-Mendoza P.L., Rico-Chávez A.K., Ferrusquía-Jimenez N.I. et al.: Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. – Sci. Total Environ. 894: 164883, 2023. 10.1016/j.scitotenv.2023.164883 PubMed DOI

Guntukula R.: Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. – J. Public Aff. 20: e2040, 2020. 10.1002/pa.2040 DOI

Guo T., Gull S., Ali M.M. et al.: Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. – Sci. Rep.-UK 12: 11324, 2022. 10.1038/s41598-022-15590-z PubMed DOI PMC

Hu K., Xu S., Gao Y. et al.: Choline chloride and rhamnolipid combined with organic manures improve salinity tolerance, yield, and quality of tomato. – J. Plant Growth Regul. 42: 4118-4130, 2023. 10.1007/s00344-022-10875-z DOI

Hu S., Ding Y., Zhu C.: Sensitivity and responses of chloroplasts to heat stress in plants. – Front. Plant Sci. 11: 375, 2020. 10.3389/fpls.2020.00375 PubMed DOI PMC

IPCC 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 3056. Cambridge University Press, Cambridge-New York: 2022. 10.1017/9781009325844 DOI

Jahan M.S., Shu S., Wang Y. et al.: Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways. – Front. Plant Sci. 12: 650955, 2021. 10.3389/fpls.2021.650955 PubMed DOI PMC

Jespersen D., Zhang J., Huang B.: Chlorophyll loss associated with heat-induced senescence in bentgrass. – Plant Sci. 249: 1-12, 2016. 10.1016/j.plantsci.2016.04.016 PubMed DOI

Johann P.D., Erkek S., Zapatka M. et al.: A typical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. – Cancer Cell 29: 379-393, 2016. 10.1016/j.ccell.2016.02.001 PubMed DOI

Kavi Kishor PB., Suravajhala P., Rathnagiri P., Sreenivasulu N.: Intriguing role of proline in redox potential conferring high temperature stress tolerance. – Front. Plant Sci. 13: 867531, 2022. 10.3389/fpls.2022.867531 PubMed DOI PMC

Khan A.H., Min L., Ma Y. et al.: High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. – Plant Biotechnol. J. 21: 680-697, 2023. 10.1111/pbi.13946 PubMed DOI PMC

Kim K., Portis A.R. Jr.: Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. – Plant Cell Physiol. 46: 522-530, 2005. 10.1093/pcp/pci052 PubMed DOI

Kim S.K., Kim Y.C., Lee S. et al.: Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). – J. Agr. Food Chem. 59: 934-938, 2011. 10.1021/jf104027x PubMed DOI

Kreslavski V.D., Khudyakova A.Y., Kosobryukhov A.A. et al.: The effect of short-term heating on photosynthetic activity, pigment content, and pro-/antioxidant balance of A. thaliana phytochrome mutants. – Plants-Basel 12: 867, 2023. 10.3390/plants12040867 PubMed DOI PMC

Kumar S., Kaushal N., Nayyar H., Gaur P.: Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. – Acta Physiol. Plant. 34: 1651-1658, 2012. 10.1007/s11738-012-0959-1 DOI

Lai C.-C., Huang Y.-C., Wei Y.-H., Chang J.-S.: Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. – J. Hazard. Mater. 167: 609-614, 2009. 10.1016/j.jhazmat.2009.01.017 PubMed DOI

Lakshmi G., Beena R., Soni K.B. et al.: Exogenously applied plant growth regulator protects rice from heat-induced damage by modulating plant defense mechanism. – J. Crop Sci. Biotechnol. 26: 63-75, 2023. 10.1007/s12892-022-00162-4 DOI

Li Q., Bian Y., Li R. et al.: Chitosan-enhanced heat tolerance associated with alterations in antioxidant defense system and gene expression in creeping bentgrass. – Grass Res. 3: 7, 2023. 10.48130/GR-2023-0007 DOI

Liu G., Zhong H., Yang X. et al.: Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. – Biotechnol. Bioeng. 115: 796-814, 2018. 10.1002/bit.26517 PubMed DOI

Liu Q., Chen C., Chen Y. et al.: Intervention of rhamnolipid improves the rhizosphere microenvironment of cotton in desert saline lands. – Environ. Technol. Innov. 32: 103378, 2023. 10.1016/j.eti.2023.103378 DOI

Lv W.-T., Lin B., Zhang M., Hua X.-J.: Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. – Plant Physiol. 156: 1921-1933, 2011. 10.1104/pp.111.175810 PubMed DOI PMC

Meng X., Wang N., He H. et al.: Prunus persica transcription factor PpNAC56 enhances heat resistance in transgenic tomatoes. – Plant Physiol. Biochem. 182: 194-201, 2022. 10.1016/j.plaphy.2022.04.026 PubMed DOI

Mo X., Qian J., Liu P. et al.: Exogenous betaine enhances the protrusion vigor of rice seeds under heat stress by regulating plant hormone signal transduction and its interaction network. – Antioxidants 11: 1792, 2022. 10.3390/antiox11091792 PubMed DOI PMC

Monnier N., Cordier M., Dahi A. et al.: Semipurified rhamnolipid mixes protect Brassica napus against Leptosphaeria maculans early infections. – Phytopathology 110: 834-842, 2020. 10.1094/PHYTO-07-19-0275-R PubMed DOI

Monnier N., Furlan A., Botcazon C. et al.: Rhamnolipids from Pseudomonas aeruginosa are elicitors triggering Brassica napus protection against Botrytis cinerea without physiological disorders. – Front. Plant Sci. 9: 1170, 2018. 10.3389/fpls.2018.01170 PubMed DOI PMC

Monnier N., Furlan A.L., Buchoux S. et al.: Exploring the dual interaction of natural rhamnolipids with plant and fungal biomimetic plasma membranes through biophysical studies. – Int. J. Mol. Sci. 20: 1009, 2019. 10.3390/ijms20051009 PubMed DOI PMC

Motta A.M., Donato M., Mobbili G. et al.: Unveiling the mono-rhamnolipid and di-rhamnolipid mechanisms of action upon plasma membrane models. – J. Colloid Interf. Sci. 624: 579-592, 2022. 10.1016/j.jcis.2022.05.145 PubMed DOI

Mukhtar T., Ali F., Rafique M. et al.: Biochemical characterization and potential of Bacillus safensis strain SCAL1 to mitigate heat stress in Solanum lycopersicum L. – J. Plant Growth Regul. 42: 523-538, 2023. 10.1007/s00344-021-10571-4 DOI

Nabavi S.M., Šamec D., Tomczyk M. et al.: Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. – Biotechnol. Adv. 38: 107316, 2020. 10.1016/j.biotechadv.2018.11.005 PubMed DOI

Niu Y., Xiang Y.: An overview of biomembrane functions in plant responses to high-temperature stress. – Front. Plant Sci. 9: 915, 2018. 10.3389/fpls.2018.00915 PubMed DOI PMC

Onlamool T., Saimmai A., Maneerat S.: Antifungal activity of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa A4 against plant pathogenic fungi. – Trends Sci. 20: 6524, 2022. 10.48048/tis.2023.6524 DOI

Park B.-M., Jeong H.-B., Yang E.-Y. et al.: Differential responses of cherry tomatoes (Solanum lycopersicum) to long-term heat stress. – Horticulturae 9: 343, 2023. 10.3390/horticulturae9030343 DOI

Paul P., Mesihovic A., Chaturvedi P. et al.: Structural and functional heat stress responses of chloroplasts of Arabidopsis thaliana. – Genes-Basel 11: 650, 2020. 10.3390/genes11060650 PubMed DOI PMC

Perkins-Kirkpatrick S.E., Gibson P.B.: Changes in regional heatwave characteristics as a function of increasing global temperature. – Sci. Rep.-UK 7: 12256, 2017. 10.1038/s41598-017-12520-2 PubMed DOI PMC

Pierre E., Marcelo P., Croutte A. et al.: Impact of rhamnolipids (RLs), natural defense elicitors, on shoot and root proteomes of Brassica napus by a Tandem Mass Tags (TMTs) labeling approach. – Int. J. Mol. Sci. 24: 2390, 2023. 10.3390/ijms24032390 PubMed DOI PMC

Platel R., Lucau-Danila A., Baltenweck R. et al.: Bioinspired rhamnolipid protects wheat against Zymoseptoria tritici through mainly direct antifungal activity and without major impact on leaf physiology. – Front. Plant Sci. 13: 878272, 2022. 10.3389/fpls.2022.878272 PubMed DOI PMC

Porcar-Castell A., Pfündel E., Korhonen J.F.J., Juurola E.: A new monitoring PAM fluorometer (MONI-PAM) to study the short- and long-term acclimation of photosystem II in field conditions. – Photosynth. Res. 96: 173-179, 2008. 10.1007/s11120-008-9292-3 PubMed DOI

Prabakaran G., Hoti S.L., Rao H.S.P., Vijjapu S.: Di-rhamnolipid is a mosquito pupicidal metabolite from Pseudomonas fluorescens (VCRC B426). – Acta Trop. 148: 24-31, 2015. 10.1016/j.actatropica.2015.03.003 PubMed DOI

Pshybytko N., Kruk J., Lysenko E. et al.: Heat-induced modifications of photosynthetic electron flows in Hordeum vulgare leaves of different age. – Environ. Exp. Bot. 206: 105151, 2023. 10.1016/j.envexpbot.2022.105151 DOI

Raja V., Qadir S.U., Alyemeni M.N., Ahmad P.: Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. – 3 Biotech 10: 208, 2020. 10.1007/s13205-020-02206-4 PubMed DOI PMC

Rajendran H.K., Das M., Chandrasekar R. et al.: UiO-66 octahedrons for adsorptive removal of direct blue-6: process optimization, interaction mechanism, and phytotoxicity assessment. – Environ. Sci. Pollut. Res. 30: 114264-114282, 2023. 10.1007/s11356-023-30296-z PubMed DOI

Rath J.R., Pandey J., Yadav R.M. et al.: Temperature-induced reversible changes in photosynthesis efficiency and organization of thylakoid membranes from pea (Pisum sativum). – Plant Physiol. Biochem. 185: 144-154, 2022. 10.1016/j.plaphy.2022.05.036 PubMed DOI

Rehman A., Khan I., Farooq M.: Secondary metabolites mediated reproductive tolerance under heat stress in plants. – J. Plant Growth Regul. 43: 2993-3011, 2024. 10.1007/s00344-023-11161-2 DOI

Robineau M., Le Guenic S., Sanchez L. et al.: Synthetic mono-rhamnolipids display direct antifungal effects and trigger an innate immune response in tomato against Botrytis cinerea. – Molecules 25: 3108, 2020. 10.3390/molecules25143108 PubMed DOI PMC

Ru C., Hu X., Chen D. et al.: Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress. – Plant Sci. 327: 111557, 2023. 10.1016/j.plantsci.2022.111557 PubMed DOI

Salehi F., Rahnama A., Meskarbashee M. et al.: Physiological and metabolic changes of safflower (Carthamus tinctorius L.) cultivars in response to terminal heat stress. – J. Plant Growth Regul. 42: 6585-6600, 2023. 10.1007/s00344-023-10911-6 DOI

Samtani H., Sharma A., Khurana J.P., Khurana P.: Thermosensing in plants: Deciphering the mechanisms involved in heat sensing and their role in thermoresponse and thermotolerance. – Environ. Exp. Bot. 203: 105041, 2022. 10.1016/j.envexpbot.2022.105041 DOI

Sanchez L., Courteaux B., Hubert J. et al.: Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. – Plant Physiol. 160: 1630-1641, 2012. 10.1104/pp.112.201913 PubMed DOI PMC

Schellenberger R., Crouzet J., Nickzad A. et al.: Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate Arabidopsis innate immunity through two independent mechanisms. – PNAS 118: e2101366118, 2021. 10.1073/pnas.2101366118 PubMed DOI PMC

Shaffique S., Khan M.A., Wani S.H. et al.: A review on the role of endophytes and plant growth promoting rhizobacteria in mitigating heat stress in plants. – Microorganisms 10: 1286, 2022. 10.3390/microorganisms10071286 PubMed DOI PMC

Sharma A., Kumar V., Shahzad B. et al.: Photosynthetic response of plants under different abiotic stresses: a review. – J. Plant Growth Regul. 39: 509-531, 2020. 10.1007/s00344-019-10018-x DOI

Sharma S., Singh V., Tanwar H. et al.: Impact of high temperature on germination, seedling growth and enzymatic activity of wheat. – Agriculture 12: 1500, 2022. 10.3390/agriculture12091500 DOI

Sihag P., Kumar U., Sagwal V. et al.: Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat (Triticum aestivum L.). – Plant Genome 17: e20307, 2024. 10.1002/tpg2.20307 PubMed DOI

Singh A., Kumar A., Yadav S., Singh I.K.: Reactive oxygen species-mediated signaling during abiotic stress. – Plant Gene 18: 100173, 2019. 10.1016/j.plgene.2019.100173 DOI

Singh M., Kumar J., Singh S. et al.: Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. – Rev. Environ. Sci. Biotechnol. 14: 407-426, 2015. 10.1007/s11157-015-9372-8 DOI

Smith A., Gentile B.R., Xin Z., Zhao D.: The effects of heat stress on male reproduction and tillering in Sorghum bicolor. – Food Energ. Secur. 12: e510, 2023. 10.1002/fes3.510 DOI

Soberón-Chávez G., Lépine F., Déziel E.: Production of rhamnolipids by Pseudomonas aeruginosa. – Appl. Microbiol. Biot. 68: 718-725, 2005. 10.1007/s00253-005-0150-3 PubMed DOI

Stone P.: The effects of heat stress on cereal yield and quality. – In: Basra A. (ed.): Crop Responses and Adaptations to Temperature Stress. Pp. 243-291. CRC Press, Boca Raton: 2023. 10.1201/9781003421221 DOI

Su F., Gilard F., Guérard F. et al.: Spatio-temporal responses of Arabidopsis leaves in photosynthetic performance and metabolite contents to Burkholderia phytofirmans PsJN. – Front. Plant Sci. 7: 403, 2016. 10.3389/fpls.2016.00403 PubMed DOI PMC

Su Y., Huang Y., Dong X. et al.: Exogenous methyl jasmonate improves heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and expression of jasmonic acid-responsive genes. – Front. Plant Sci. 12: 664519, 2021. 10.3389/fpls.2021.664519 PubMed DOI PMC

Suzuki N.: Fine tuning of ROS, redox and energy regulatory systems associated with the functions of chloroplasts and mitochondria in plants under heat stress. – Int. J. Mol. Sci. 24: 1356, 2023. 10.3390/ijms24021356 PubMed DOI PMC

Suzuki N., Mittler R.: Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. – Physiol. Plantarum 126: 45-51, 2006. 10.1111/j.0031-9317.2005.00582.x DOI

Tafesse E.G., Warkentin T.D., Bueckert R.A.: Canopy architecture and leaf type as traits of heat resistance in pea. – Field Crop. Res. 241: 107561, 2019. 10.1016/j.fcr.2019.107561 DOI

Todorov D.T., Karanov E.N., Smith A.R., Hall M.A.: Chlorophyllase activity and chlorophyll content in wild type and eti5 mutant of Arabidopsis thaliana subjected to low and high temperatures. – Biol. Plantarum 46: 633-636, 2003. 10.1023/A:1024896418839 DOI

Varnier A.-L., Sanchez L., Vatsa P. et al.: Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. – Plant Cell Environ. 32: 178-193, 2009. 10.1111/j.1365-3040.2008.01911.x PubMed DOI

von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. – Planta 153: 376-387, 1981. 10.1007/BF00384257 PubMed DOI

Wahid A.: Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. – J. Plant Res. 120: 219-228, 2007. 10.1007/s10265-006-0040-5 PubMed DOI

Wahid A., Gelani S., Ashraf M., Foolad M.R.: Heat tolerance in plants: an overview. – Environ. Exp. Bot. 61: 199-223, 2007. 10.1016/j.envexpbot.2007.05.011 DOI

Wang L., Ma K.-B., Lu Z.-G. et al.: Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. – BMC Plant Biol. 20: 86, 2020. 10.1186/s12870-020-2292-y PubMed DOI PMC

Wang Q.-L., Chen J.-H., He N.-Y., Guo F.-Q.: Metabolic reprogramming in chloroplasts under heat stress in plants. – Int. J. Mol. Sci. 19: 849, 2018. 10.3390/ijms19030849 PubMed DOI PMC

Wang W., Xie Y., Liu C., Jiang H.: The exogenous application of brassinosteroids confers tolerance to heat stress by increasing antioxidant capacity in soybeans. – Agriculture 12: 1095, 2022. 10.3390/agriculture12081095 DOI

Wang X., Altaf M.A., Hao Y. et al.: Effect of heat stress on root architecture, photosynthesis, and antioxidant profile of water spinach (Ipomoea aquatica Forsk) seedlings. – Horticulturae 9: 923, 2023. 10.3390/horticulturae9080923 DOI

Wassie M., Zhang W., Zhang Q. et al.: Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). – Ecotox. Environ. Safe. 191: 110206, 2020. 10.1016/j.ecoenv.2020.110206 PubMed DOI

Wedler M., Pinto J.G., Hochman A.: More frequent, persistent, and deadly heat waves in the 21st century over the Eastern Mediterranean. – Sci. Total Environ. 870: 161883, 2023. 10.1016/j.scitotenv.2023.161883 PubMed DOI

Xalxo R., Yadu B., Chandra J. et al.: Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress. – In: Wani S.H., Kumar V. (ed.): Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives. Pp. 77-115. John Wiley & Sons, Hoboken: 2020. 10.1002/9781119432401.ch5 DOI

Yang D., Li Y., Shi Y. et al.: Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay-green characteristics under heat stress. – PLoS ONE 11: e0155437, 2016. 10.1371/journal.pone.0155437 PubMed DOI PMC

Zahra N., Hafeez M.B., Ghaffar A. et al.: Plant photosynthesis under heat stress: Effects and management. – Environ. Exp. Bot. 206: 105178, 2023. 10.1016/j.envexpbot.2022.105178 DOI

Zhang L., Chang Q., Hou X. et al.: The effect of high-temperature stress on the physiological indexes, chloroplast ultrastructure, and photosystems of two herbaceous peony cultivars. – J. Plant Growth Regul. 42: 1631-1646, 2023a. 10.1007/s00344-022-10647-9 DOI

Zhang X., Yang Z., Wang L. et al.: The effects of plant growth-promoting rhizobacteria on plants under temperature stress: A meta-analysis. – Rhizosphere 28: 100788, 2023b. 10.1016/j.rhisph.2023.100788 DOI

Zhang Z., Lan M., Han X. et al.: Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature. – J. Plant Growth Regul. 39: 133-146, 2020. 10.1007/s00344-019-09969-y DOI

Zhao C., Liu B., Piao S. et al.: Temperature increase reduces global yields of major crops in four independent estimates. – PNAS 114: 9326-9331, 2017. 10.1073/pnas.1701762114 PubMed DOI PMC

Zhao F., Wang B., Yuan M., Ren S.: Comparative study on antimicrobial activity of mono-rhamnolipid and di-rhamnolipid and exploration of cost-effective antimicrobial agents for agricultural applications. – Microb. Cell Fact. 21: 221, 2022. 10.1186/s12934-022-01950-x PubMed DOI PMC

Zhao J., Lu Z., Wang L., Jin B.: Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. – Int. J. Mol. Sci. 22: 117, 2021. 10.3390/ijms22010117 PubMed DOI PMC

Zulfiqar F., Ashraf M.: Proline alleviates abiotic stress induced oxidative stress in plants. – J. Plant Growth Regul. 42: 4629-4651, 2023. 10.1007/s00344-022-10839-3 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...