Efficient pressure regulation in nonlinear shell-and-tube steam condensers via a Novel TDn(1 + PIDn) controller and DCSA algorithm
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000025 National Centre for Energy II
Ministry of Education, Youth and Sports
TN02000025 National Centre for Energy II
Ministry of Education, Youth and Sports
CZ.10.03.01/00/22_003/0000048
Ministry of the Environment of the Czech Republic
CZ.10.03.01/00/22_003/0000048
Ministry of the Environment of the Czech Republic
PubMed
39814839
PubMed Central
PMC11735768
DOI
10.1038/s41598-025-86107-7
PII: 10.1038/s41598-025-86107-7
Knihovny.cz E-zdroje
- Klíčová slova
- Crow search algorithm (CSA), DCSA optimization, Multistage TDn(1 + PIDn) controller, Nonlinear control, PID controller, Pressure regulation, Steam condensers, Thermal power plant,
- Publikační typ
- časopisecké články MeSH
Steam condensers are vital components of thermal power plants, responsible for converting turbine exhaust steam back into water for reuse in the power generation cycle. Effective pressure regulation is crucial to ensure operational efficiency and equipment safety. However, conventional control strategies, such as PI, PI-PDn and FOPID controllers, often struggle to manage the nonlinearities and disturbances inherent in steam condenser systems. This paper introduces a novel multistage controller, TDn(1 + PIDn), optimized using the diligent crow search algorithm (DCSA). The proposed controller is specifically designed to address system nonlinearities, external disturbances, and the complexities of dynamic responses in steam condensers. Key contributions include the development of a flexible multi-stage control framework and its optimization via DCSA to achieve enhanced stability, faster response times, and reduced steady-state errors. Simulation results demonstrate that the TDn(1 + PIDn) controller outperforms conventional control strategies, including those tuned with advanced metaheuristic algorithms, in terms of settling time, overshoot, and integral of time weighted absolute error (ITAE). This study marks a significant advancement in pressure regulation strategies, providing a robust and adaptive solution for nonlinear industrial systems.
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
College of Engineering University of Business and Technology Jeddah 21448 Saudi Arabia
Department of Computer Engineering Batman University Batman Turkey
Department of Electrical Engineering Graphic Era Dehradun 248002 India
ENET Centre VSB Technical University of Ostrava Ostrava 708 00 Czech Republic
Faculty of Electrical Engineering Sahand University of Technology Tabriz Iran
Zobrazit více v PubMed
Wang, Z., Liu, M., Yan, H. & Yan, J. Optimization on coordinate control strategy assisted by high-pressure extraction steam throttling to achieve flexible and efficient operation of thermal power plants. Energy244, 122676 (2022).
Khaleel, O. J., Basim Ismail, F., Khalil Ibrahim, T. & bin Abu Hassan, S. H. Energy and exergy analysis of the steam power plants: a comprehensive review on the classification, Development, improvements, and configurations. Ain Shams Eng. J.13, 101640 (2022).
Madejski, P., Kuś, T., Michalak, P., Karch, M. & Subramanian, N. Direct contact condensers: a Comprehensive Review of Experimental and Numerical investigations on Direct-Contact Condensation. Energies (Basel)15, 9312 (2022).
Ni, L., Li, Y., Zhang, L. & Wang, G. A modified aquila optimizer with wide plant adaptability for the tuning of optimal fractional proportional–integral–derivative controller. Soft Comput.28, 6269–6305 (2024).
Sagor, A. R. et al. Pelican optimization algorithm-based proportional–integral–derivative Controller for Superior frequency regulation in interconnected Multi-area Power Generating System. Energies (Basel)17, 3308 (2024).
Gulzar, M. M., Sibtain, D. & Khalid, M. Innovative design for enhancing transient stability with an ATFOPID controller in hybrid power systems. J. Energy Storage99, 113364 (2024).
Qu, Z. et al. Optimized PID Controller for load frequency control in multi-source and Dual-Area Power Systems Using PSO and GA algorithms. IEEE Access. 1–1. 10.1109/ACCESS.2024.3445165 (2024).
Alzakari, S. A., Izci, D., Ekinci, S., Alhussan, A. A. & Hashim, F. A. Nonlinear FOPID controller design for pressure regulation of steam condenser via improved metaheuristic algorithm. PLoS One19, e0309211 (2024). PubMed PMC
Li, S., Chen, H., Wang, M., Heidari, A. A. & Mirjalili, S. Slime mould algorithm: a new method for stochastic optimization. Future Generation Comput. Syst.111, 300–323 (2020).
Mohammadi-Balani, A., Dehghan Nayeri, M., Azar, A. & Taghizadeh-Yazdi, M. Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Comput. Ind. Eng.152, 107050 (2021).
Suyanto, S., Ariyanto, A. A. & Ariyanto, A. F. Komodo Mlipir Algorithm. Appl. Soft Comput.114, 108043 (2022).
Zhao, W. et al. Quadratic interpolation optimization (QIO): a new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems. Comput. Methods Appl. Mech. Eng.417, 116446 (2023).
Muni, M. K., Parhi, D. R. & Kumar, P. B. Implementation of grey wolf optimization controller for multiple humanoid navigation. Comput. Animat Virtual Worlds31, (2020).
Shami, T. M. et al. Particle swarm optimization: a Comprehensive Survey. IEEE Access.10, 10031–10061 (2022).
Parvin, K. et al. Intelligent Controllers and Optimization Algorithms for Building Energy Management towards Achieving Sustainable Development: challenges and prospects. IEEE Access.9, 41577–41602 (2021).
Deng, W., Xu, J. & Zhao, H. An Improved ant colony optimization Algorithm based on hybrid strategies for Scheduling Problem. IEEE Access.7, 20281–20292 (2019).
Li, S. X. & Wang, J. S. Dynamic modeling of Steam Condenser and Design of PI Controller based on Grey Wolf Optimizer. Math. Probl. Eng.2015, 1–9 (2015).
Mishra, D., Nayak, P. C., Bhoi, S. K. & Prusty, R. C. Design and analysis of Multi-stage TDF/(1 + TI) controller for Load-frequency control of A.C Multi-Islanded Microgrid system using Modified Sine cosine algorithm. in 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON) 1–6 (IEEE, 2021). 10.1109/ODICON50556.2021.9428969 (2021).
Wang, J. S. & Li, S. X. PID Controller of Steam Condenser based on particle swarm optimization algorithm. J. Comput. Theor. Nanosci.14, 3698–3701 (2017).
Idir, A. et al. PID Controller Design with a New Method Based on Fractionalized Integral Gain for Cruise Control System. in. IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe) 1–6 (IEEE, 2024). 10.1109/EEEIC/ICPSEurope61470.2024.10751521 (2024).
Jabari, M., Izci, D., Ekinci, S., Bajaj, M. & Zaitsev, I. Performance analysis of DC-DC Buck converter with innovative multi-stage PIDn(1 + PD) controller using GEO algorithm. Sci. Rep.14, 25612 (2024). PubMed PMC
Bin Roslan, M. N., Bingi, K., Devan, P. A. M. & Ibrahim, R. Design and development of Complex-Order PI-PD controllers: Case studies on pressure and Flow process control. Appl. Syst. Innov.7, 33 (2024).
Jabari, M., Ekinci, S., Izci, D., Bajaj, M. & Zaitsev, I. Efficient DC motor speed control using a novel multi-stage FOPD(1 + PI) controller optimized by the Pelican optimization algorithm. Sci. Rep.14, 22442 (2024). PubMed PMC
Jabari, M. & Rad, A. Optimization of Speed Control and Reduction of Torque Ripple in switched Reluctance motors using Metaheuristic algorithms based PID and FOPID controllers at the Edge. Tsinghua Sci. Technol.10.26599/TST.2024.9010021 (2024).
Idir, A., Bensafia, Y. & Canale, L. Influence of approximation methods on the design of the novel low-order fractionalized PID controller for aircraft system. J. Brazilian Soc. Mech. Sci. Eng.46, 98 (2024).
Elkasem, A. H. A., Kamel, S., Khamies, M. & Nasrat, L. Frequency regulation in a hybrid renewable power grid: an effective strategy utilizing load frequency control and redox flow batteries. Sci. Rep.14, 9576 (2024). PubMed PMC
Hassan, A. et al. Optimized Multiloop Fractional-Order Controller for regulating frequency in diverse-sourced vehicle-to-Grid Power systems. Fractal Fract.7, 864 (2023).
Nayak, P. C., Mishra, S., Prusty, R. C. & Panda, S. Hybrid whale optimization algorithm with simulated annealing for load frequency controller design of hybrid power system. Soft Comput.10.1007/s00500-023-09072-1 (2023).
Mishra, D., Nayak, P. C., Prusty, R. C. & Panda, S. An improved equilibrium optimization-based fuzzy tilted double integral derivative with filter (F-TIDF-2) controller for frequency regulation of an off-grid microgrid. Electr. Eng.106, 2033–2055 (2024).
Baral, K. K., Nayak, P. C., Mohanty, B. & Barisal, A. K. Improved frequency regulation of dual-area hybrid power system with the influence of energy storage devices. Electr. Eng.10.1007/s00202-024-02670-8 (2024).
Jibril, M., Tadesse, M., Hassen, N. & Abebe, Y. Modeling and Performance Analysis of Shell Tube Surface Condenser under Lumped parameters using fuzzy self-tuning PI Controller. Int. J. Electron. Electr. Eng. Syst.3, (2020).
Ekinci, S. et al. Optimizing steam condenser efficiency: integrating logarithmic spiral search and greedy selection mechanisms in gazelle optimizer for PI controller tuning. Results Eng.24, 103501 (2024).
Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct.169, 1–12 (2016).
Amiri, M. H., Hashjin, M., Montazeri, N., Mirjalili, M., Khodadadi, N. & S. & Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Sci. Rep.14, 5032 (2024). PubMed PMC
Su, H. et al. A physics-based optimization. Neurocomputing532, 183–214 (2023).
Ekinci, S. et al. Automatic Generation Control of a hybrid PV-Reheat Thermal Power System using RIME algorithm. IEEE Access.12, 26919–26930 (2024).
Izci, D., Ekinci, S. & Ma’arif, A. Parameter extraction of triple-diode Photovoltaic Model via RIME Optimizer with Neighborhood Centroid Opposite Solution. J. Rob. Control (JRC)5, 1098–1103 (2024).
Zhao, W. et al. Electric eel foraging optimization: a new bio-inspired optimizer for engineering applications. Expert Syst. Appl.238, 122200 (2024).