The Blood-Cerebrospinal Fluid Barrier as a Potential Entry Site for the SARS-CoV-2 Virus

. 2025 Jan ; 97 (1) : e70184.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39835622

Grantová podpora
This work was conducted under the support of the project of Security Research of the Ministry of the Interior of the Czech Republic (Grant No. VI04000071) and the Internal Grant Agency of Masaryk University (Grant No. MUNI/A/1563/2023).

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain. Tissue samples from 24 deceased COVID-19-positive individuals were analyzed. Reverse transcription real-time PCR (RT-qPCR) was performed on selected brain regions, including the choroid plexus, to detect SARS-CoV-2 viral RNA. Additionally, immunofluorescence staining and confocal microscopy were used to detect and localize two characteristic proteins of SARS-CoV-2: the spike protein S1 and the nucleocapsid protein. RT-qPCR analysis confirmed the presence of SARS-CoV-2 viral RNA in the choroid plexus. Immunohistochemical staining revealed viral particles localized in the epithelial cells of the choroid plexus, with the spike protein S1 detected in the late endosomes. Our findings suggest that the blood-cerebrospinal fluid (B-CSF) barrier in the choroid plexus serves as a route of entry for SARS-CoV-2 into the CNS. This study contributes to the understanding of the mechanisms underlying CNS involvement in COVID-19 and highlights the importance of further research to explore potential therapeutic strategies targeting this entry pathway.

Zobrazit více v PubMed

R. Abdelnabi, R. Boudewijns, C. S. Foo, et al., “Comparing Infectivity and Virulence of Emerging SARS‐CoV‐2 Variants in Syrian Hamsters,” EBioMedicine 68 (2021): 103403, https://doi.org/10.1016/j.ebiom.2021.103403.

R. Dziedzinska, P. Kralik, and O. Šerý, “Occurrence of SARS‐CoV‐2 in Indoor Environments With Increased Circulation and Gathering of People,” Frontiers in Public Health 9 (2021): 787841, https://doi.org/10.3389/fpubh.2021.787841.

V. Arévalos, L. Ortega‐Paz, J. J. Rodríguez‐Arias, et al., “Acute and Chronic Effects of COVID‐19 on the Cardiovascular System,” Journal of Cardiovascular Development and Disease 8, no. 10 (2021): 128, https://doi.org/10.3390/jcdd8100128.

S. Misra, K. Kolappa, M. Prasad, et al., “Frequency of Neurologic Manifestations in COVID‐19: A Systematic Review and Meta‐Analysis,” Neurology 97, no. 23 (2021): e2269–e2281, https://doi.org/10.1212/WNL.0000000000012930.

D. E. Septyaningtrias and R. Susilowati, “Neurological Involvement of COVID‐19: From Neuroinvasion and Neuroimmune Crosstalk to Long‐Term Consequences,” Reviews in the Neurosciences 32, no. 4 (2021): 427–442, https://doi.org/10.1515/revneuro-2020-0092.

P. Solár, A. Zamani, L. Kubíčková, P. Dubový, and M. Joukal, “Choroid Plexus and the Blood‐Cerebrospinal Fluid Barrier in Disease,” Fluids and Barriers of the CNS 17, no. 1 (2020): 35, https://doi.org/10.1186/s12987-020-00196-2.

F. Deffner, M. Scharr, S. Klingenstein, et al., “Histological Evidence for the Enteric Nervous System and the Choroid Plexus as Alternative Routes of Neuroinvasion by SARS‐CoV2,” Frontiers in Neuroanatomy 14 (2020): 596439, https://doi.org/10.3389/fnana.2020.596439.

L. Pellegrini, A. Albecka, D. L. Mallery, et al., “SARS‐CoV‐2 Infects the Brain Choroid Plexus and Disrupts the Blood‐CSF Barrier in Human Brain Organoids,” Cell Stem Cell 27, no. 6 (2020): 951–961.e5, https://doi.org/10.1016/j.stem.2020.10.001.

X. Yang, Y. Yu, J. Xu, et al., “Clinical Course and Outcomes of Critically Ill Patients with SARS‐CoV‐2 Pneumonia in Wuhan, China: A Single‐Centered, Retrospective, Observational Study,” Lancet Respiratory Medicine 8, no. 5 (2020): 475–481, https://doi.org/10.1016/S2213-2600(20)30079-5.

P. Guadarrama‐Ortiz, J. A. Choreño‐Parra, C. M. Sánchez‐Martínez, F. J. Pacheco‐Sánchez, A. I. Rodríguez‐Nava, and G. García‐Quintero, “Neurological Aspects of SARS‐CoV‐2 Infection: Mechanisms and Manifestations,” Frontiers in Neurology 11 (2020): 1039, https://doi.org/10.3389/fneur.2020.01039.

K. Tyagi, P. Rai, A. Gautam, et al., “Neurological Manifestations of SARS‐CoV‐2: Complexity, Mechanism and Associated Disorders,” European Journal of Medical Research 28, no. 1 (2023): 307, https://doi.org/10.1186/s40001-023-01293-2.

J. Xu, S. Zhong, J. Liu, et al., “Detection of Severe Acute Respiratory Syndrome Coronavirus in the Brain: Potential Role of the Chemokine Mig in Pathogenesis,” Clinical Infectious Diseases 41, no. 8 (2005): 1089–1096, https://doi.org/10.1086/444461.

A. Acharya, B. D. Kevadiya, H. E. Gendelman, and S. N. Byrareddy, “SARS‐CoV‐2 Infection Leads to Neurological Dysfunction,” Journal of Neuroimmune Pharmacology 15, no. 2 (2020): 167–173, https://doi.org/10.1007/s11481-020-09924-9.

H. Crook, S. Raza, J. Nowell, M. Young, and P. Edison, “Long Covid‐Mechanisms, Risk Factors, and Management,” BMJ 374 (2021): n1648, https://doi.org/10.1136/bmj.n1648.

M. Rahmati, R. Udeh, D. K. Yon, et al., “A Systematic Review and Meta‐Analysis of Long‐Term Sequelae of COVID‐19 2‐year after SARS‐CoV‐2 Infection: A Call to Action for Neurological, Physical, and Psychological Sciences,” Journal of Medical Virology 95, no. 6 (2023): e28852, https://doi.org/10.1002/jmv.28852.

P. Kralik and M. Ricchi, “A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything,” Frontiers in Microbiology 8 (2017): 00108, https://doi.org/10.3389/fmicb.2017.00108.

Z. L, “Buffered Picric Acid‐Formaldehyde: A New Rapid Fixation for Electron Microscopy,” Journal of Cell Biology 35 (1967): 148A, https://cir.nii.ac.jp/crid/1571135650533875968.

D. K. Derkaoui, D. A. Abdessamad, and B. Noureddine, “SARS‐CoV‐2 & COVID‐19. From Virology to Epidemiology: “Epidemiological Situation in Algeria and in West Algerian Area,” Egyptian Academic Journal of Biological Sciences C, Physiology and Molecular Biology 13, no. 1 (2021): 41–59, https://doi.org/10.21608/eajbsc.2021.146672.

I. Alquisiras‐Burgos, I. Peralta‐Arrieta, L. A. Alonso‐Palomares, A. E. Zacapala‐Gómez, E. G. Salmerón‐Bárcenas, and P. Aguilera, “Neurological Complications Associated With the Blood‐Brain Barrier Damage Induced by the Inflammatory Response During SARS‐CoV‐2 Infection,” Molecular Neurobiology 58, no. 2 (2021): 520–535, https://doi.org/10.1007/s12035-020-02134-7.

Y. Yachou, A. El Idrissi, V. Belapasov, and S. Ait Benali, “Neuroinvasion, Neurotropic, and Neuroinflammatory Events of SARS‐CoV‐2: Understanding the Neurological Manifestations in COVID‐19 Patients,” Neurological ScienceS 41, no. 10 (2020): 2657–2669, https://doi.org/10.1007/s10072-020-04575-3.

F. Jacob, S. R. Pather, W. K. Huang, et al., “Human Pluripotent Stem Cell‐Derived Neural Cells and Brain Organoids Reveal SARS‐CoV‐2 Neurotropism Predominates in Choroid Plexus Epithelium,” Cell Stem Cell 27, no. 6 (2020): 937–950.e9, https://doi.org/10.1016/j.stem.2020.09.016.

R. Li and C. Qin, “Expression Pattern and Function of SARS‐CoV‐2 Receptor ACE2,” Biosafety and Health 3, no. 6 (2021): 312–318, https://doi.org/10.1016/j.bsheal.2021.08.003.

R. Chen, K. Wang, J. Yu, et al., “The Spatial and Cell‐Type Distribution of SARS‐CoV‐2 Receptor ACE2 in the Human and Mouse Brains,” Frontiers in Neurology 11 (2021): 573095, https://doi.org/10.3389/fneur.2020.573095.

O. Šerý and R. Dziedzinská, “Coronavirus and Spike Protein on Cardiac Tissue: A Comprehensive Review,” Physiological Research 73 (2024): S655–S669.

D. Hou, W. Cao, S. Kim, et al., “Biophysical Investigation of Interactions Between SARS‐CoV‐2 Spike Protein and Neuropilin‐1,” Protein Science 32, no. 10 (2023): e4773, https://doi.org/10.1002/pro.4773.

C. Prelli Bozzo, R. Nchioua, M. Volcic, et al., “IFITM Proteins Promote SARS‐CoV‐2 Infection and are Targets for Virus Inhibition In Vitro,” Nature Communications 12, no. 1 (2021): 4584, https://doi.org/10.1038/s41467-021-24817-y.

R. Villaseñor, J. Lampe, M. Schwaninger, and L. Collin, “Intracellular Transport and Regulation of Transcytosis Across the Blood‐Brain Barrier,” Cellular and Molecular Life Sciences 76, no. 6 (2019): 1081–1092, https://doi.org/10.1007/s00018-018-2982-x.

H. Wang, P. Yang, K. Liu, et al., “SARS Coronavirus Entry Into Host Cells Through a Novel Clathrin‐ and Caveolae‐Independent Endocytic Pathway,” Cell Research 18, no. 2 (2008): 290–301, https://doi.org/10.1038/cr.2008.15.

N. Yang and H. M. Shen, “Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in Covid‐19,” International Journal of Biological Sciences 16, no. 10 (2020): 1724–1731, https://doi.org/10.7150/ijbs.45498.

N. Murgolo, A. G. Therien, B. Howell, et al., “SARS‐CoV‐2 Tropism, Entry, Replication, and Propagation: Considerations for Drug Discovery and Development,” PLoS Pathogens 17, no. 2 (2021): e1009225, https://doi.org/10.1371/journal.ppat.1009225.

D. Neil, L. Moran, C. Horsfield, et al., “Ultrastructure of Cell Trafficking Pathways and Coronavirus: How to Recognise the Wolf Amongst the Sheep,” Journal of Pathology 252, no. 4 (2020): 346–357, https://doi.org/10.1002/path.5547.

E. Balse and S. N. Hatem, “Do Cellular Entry Mechanisms of SARS‐Cov‐2 Affect Myocardial Cells and Contribute to Cardiac Injury in COVID‐19 Patients?,” Frontiers in Physiology 12 (2021): 630778, https://doi.org/10.3389/fphys.2021.630778.

S. Ghosh, T. A. Dellibovi‐Ragheb, A. Kerviel, et al., “β‐Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway,” Cell 183, no. 6 (2020): 1520–1535.e14, https://doi.org/10.1016/j.cell.2020.10.039.

S. B. Alam, S. Willows, M. Kulka, and J. K. Sandhu, “Severe Acute Respiratory Syndrome Coronavirus 2 May be an Underappreciated Pathogen of the Central Nervous System,” European Journal of Neurology 27, no. 11 (2020): 2348–2360, https://doi.org/10.1111/ene.14442.

A. N. Lauer, T. Tenenbaum, H. Schroten, and C. Schwerk, “The Diverse Cellular Responses of the Choroid Plexus During Infection of the Central Nervous System,” American Journal of Physiology‐Cell Physiology 314, no. 2 (2018): C152–C165, https://doi.org/10.1152/ajpcell.00137.2017.

B. Shrestha, D. Paul, and J. S. Pachter, “Alterations in Tight Junction Protein and IgG Permeability Accompany Leukocyte Extravasation Across the Choroid Plexus During Neuroinflammation,” Journal of Neuropathology & Experimental Neurology 73, no. 11 (2014): 1047–1061, https://doi.org/10.1097/NEN.0000000000000127.

A. Shepley‐McTaggart, C. A. Sagum, and I. Oliva, et al, “SARS‐CoV‐2 Envelope (E) Protein Interacts with PDZ‐Domain‐2 of Host Tight Junction Protein ZO1,” bioRxiv 23 (2020): 422708, https://doi.org/10.1101/2020.12.22.422708.

Z. Redzic, “Molecular Biology of the Blood‐Brain and the Blood‐Cerebrospinal Fluid Barriers: Similarities and Differences,” Fluids and Barriers of the CNS 8, no. 1 (2011): 3, https://doi.org/10.1186/2045-8118-8-3.

H. Li, L. Liu, D. Zhang, et al., “SARS‐CoV‐2 and Viral Sepsis: Observations and Hypotheses,” Lancet 395, no. 10235 (2020): 1517–1520, https://doi.org/10.1016/S0140-6736(20)30920-X.

J. D. Järhult, M. Hultström, A. Bergqvist, R. Frithiof, and M. Lipcsey, “The Impact of Viremia on Organ Failure, Biomarkers and Mortality in a Swedish Cohort of Critically Ill COVID‐19 Patients,” Scientific Reports 11, no. 1 (2021): 7163, https://doi.org/10.1038/s41598-021-86500-y.

D. R. Getts, V. J. Balcar, I. Matsumoto, M. Müller, and N. J. C. King, “Viruses and the Immune System: Their Roles in Seizure Cascade Development,” Journal of Neurochemistry 104, no. 5 (2008): 1167–1176, https://doi.org/10.1111/j.1471-4159.2007.05171.x.

J. Meinhardt, J. Radke, C. Dittmayer, et al., “Olfactory Transmucosal SARS‐CoV‐2 Invasion as a Port of Central Nervous System Entry in Individuals With COVID‐19,” Nature Neuroscience 24, no. 2 (2021): 168–175, https://doi.org/10.1038/s41593-020-00758-5.

S. A. Wellford and E. A. Moseman, “Olfactory Immune Response to Sars‐Cov‐2,” Cellular & molecular immunology 21, no. 2 (2024): 134–143, https://doi.org/10.1038/s41423-023-01119-5.

M. Khan, M. Clijsters, S. Choi, et al., “Anatomical Barriers Against SARS‐CoV‐2 Neuroinvasion at Vulnerable Interfaces Visualized in Deceased COVID‐19 Patients,” Neuron 110, no. 23 (2022): 3919–3935.e6, https://doi.org/10.1016/j.neuron.2022.11.007.

R. Butowt, N. Meunier, B. Bryche, and C. S. von Bartheld, “The Olfactory Nerve Is Not a Likely Route to Brain Infection in COVID‐19: A Critical Review of Data From Humans and Animal Models,” Acta Neuropathologica 141, no. 6 (2021): 809–822, https://doi.org/10.1007/s00401-021-02314-2.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace