AI-Enhanced Understanding of Retention Interactions in Supercritical Fluid Chromatography: Neural Network Insights into Retention on Selected Non-Polar Stationary Phases
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39835727
PubMed Central
PMC11800175
DOI
10.1021/acs.analchem.4c05176
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The retention behavior in supercritical fluid chromatography (SFC) remains a complex and poorly understood phenomenon despite the development of various models to explain retention mechanisms. This study aims to deepen the understanding of retention by investigating three distinct stationary phases: high-strength silica octadecyl (HSS C18 SB), charged surface hybrid pentafluorophenyl (CSH PFP), and porous graphitic carbon (PGC) as a nonsilica-based phase. Three mobile phase compositions, i.e., CO2/methanol, CO2/methanol +10 mmol/L NH3, and CO2/methanol +2% H2O, were investigated using an extensive set of analytes characterized by over 200 molecular descriptors. Artificial neural networks were employed to analyze the influence of these descriptors on retention behavior, revealing the most significant molecular features that increase or decrease retention on each column with the three different mobile phases. This complex evaluation of the large set of experimental data enabled to link specific analyte properties to retention interactions in SFC, including the interaction of analytes with partial positive charge with silanol groups on the HSS C18 SB column when using methanol + H2O as the organic modifier. The flexibility of the alkyl chain in the HSS C18 SB column is also affected by the composition of the organic modifier, which alters retention mechanisms, especially when NH3 is used as an additive. This highlights the critical role of the mobile phase composition in modulating the behavior of nonpolar stationary phases. Completely different interaction mechanisms were observed for the PGC column when comparing methanol with and without additives, suggesting possible modifications to the planar structure and surface polarizability of the PGC phase. Statistical evaluation of data collected over a year of column usage demonstrated distinct long-term retention stability trends. The HSS C18 SB column exhibited the greatest stability with methanol + H2O, whereas significant retention decreases were observed with methanol + NH3 modifier, particularly for CSH PFP and, unexpectedly, also for PGC. These findings provide crucial insights into the long-term retention behavior and aging of SFC columns, with practical implications for optimizing SFC conditions and improving column lifetime.
Zobrazit více v PubMed
Plachká K.; Pilařová V.; Horáček O.; Gazárková T.; Vlčková H. K.; Kučera R.; Nováková L. Columns in analytical-scale supercritical fluid chromatography: From traditional to unconventional chemistries. J. Sep. Sci. 2023, 46, 2300431.10.1002/jssc.202300431. PubMed DOI
Losacco G. L.; Veuthey J.-L.; Guillarme D. Metamorphosis of supercritical fluid chromatography: A viable tool for the analysis of polar compounds?. TrAC, Trends Anal. Chem. 2021, 141, 116304.10.1016/j.trac.2021.116304. DOI
Si-Hung L.; Bamba T. Current state and future perspectives of supercritical fluid chromatography. TrAC, Trends Anal. Chem. 2022, 149, 116550.10.1016/j.trac.2022.116550. DOI
West C.; Lesellier E.. Chapter 3 - Selection of SFC stationary and mobile phases. In Separation Science and Technology; Hicks M., Ferguson P., Eds.; Academic Press, 2022; Vol. 14, pp 49–71.
Pilařová V.; Plachká K.; Gazárková T.; Svec F.; Garrigues J. C.; Nováková L. Using artificial neural networks to elucidate retention interactions on stationary phases with amine moieties dedicated to supercritical fluid chromatography. Sep. Purif. Technol. 2025, 356, 129965.10.1016/j.seppur.2024.129965. DOI
Plachká K.; Pilařová V.; Gazárková T.; Svec F.; Garrigues J. C.; Nováková L. Advancing Fundamental Understanding of Retention Interactions in Supercritical Fluid Chromatography Using Artificial Neural Networks: Polar Stationary Phases with – OH Moieties. Anal. Chem. 2024, 96, 12748–12759. 10.1021/acs.analchem.4c01811. PubMed DOI PMC
West C.; Lemasson E. Unravelling the effects of mobile phase additives in supercritical fluid chromatography—Part II: Adsorption on the stationary phase. J. Chromatogr. A 2019, 1593, 135–146. 10.1016/j.chroma.2019.02.002. PubMed DOI
Poole C. F. Stationary phases for packed-column supercritical fluid chromatography. J. Chromatogr. A 2012, 1250, 157–171. 10.1016/j.chroma.2011.12.040. PubMed DOI
Fairchild J. N.; Brousmiche D. W.; Hill J. F.; Morris M. F.; Boissel C. A.; Wyndham K. D. Chromatographic Evidence of Silyl Ether Formation (SEF) in Supercritical Fluid Chromatography. Anal. Chem. 2015, 87, 1735–1742. 10.1021/ac5035709. PubMed DOI
Waters Corporation . ACQUITY UPC2 BEH, HSS, and CSH Columns Care and Use Manual; Waters Corporation: USA, 2015.
West C.; Lemasson E.; Bertin S.; Hennig P.; Lesellier E. An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography. J. Chromatogr. A 2016, 1440, 212–228. 10.1016/j.chroma.2016.02.052. PubMed DOI
Khater S.; West C.; Lesellier E. Characterization of five chemistries and three particle sizes of stationary phases used in supercritical fluid chromatography. J. Chromatogr. A 2013, 1319, 148–159. 10.1016/j.chroma.2013.10.037. PubMed DOI
Lesellier E. Usual, unusual and unbelievable retention behavior in achiral supercritical fluid chromatography: Review and discussion. J. Chromatogr. A 2020, 1614, 460582.10.1016/j.chroma.2019.460582. PubMed DOI
Lesellier E. Extension of the carotenoid test to superficially porous C18 bonded phases, aromatic ligand types and new classical C18 bonded phases. J. Chromatogr. A 2012, 1266, 34–42. 10.1016/j.chroma.2012.09.068. PubMed DOI
West C.; Lemasson E.; Khater S.; Lesellier E. An attempt to estimate ionic interactions with phenyl and pentafluorophenyl stationary phases in supercritical fluid chromatography. J. Chromatogr. A 2015, 1412, 126–138. 10.1016/j.chroma.2015.08.009. PubMed DOI
West C.; Lesellier E. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model IV: Aromatic stationary phases. J. Chromatogr. A 2006, 1115, 233–245. 10.1016/j.chroma.2006.02.050. PubMed DOI
Si-Hung L.; Bamba T. A review of retention mechanism studies for packed column supercritical fluid chromatography. Anal. Sci. Adv. 2021, 2, 47–67. 10.1002/ansa.202000144. PubMed DOI PMC
De Matteis C. I.; Simpson D. A.; Euerby M. R.; Shaw P. N.; Barrett D. A. Chromatographic retention behaviour of monosubstituted benzene derivatives on porous graphitic carbon and octadecyl-bonded silica studied using molecular modelling and quantitative structure–retention relationships. J. Chromatogr. A 2012, 1229, 95–106. 10.1016/j.chroma.2011.12.090. PubMed DOI
Pereira L. Porous Graphitic Carbon as a Stationary Phase in HPLC: Theory and Applications. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 1687–1731. 10.1080/10826070802126429. DOI
West C.; Lesellier E.; Tchapla A. Retention characteristics of porous graphitic carbon in subcritical fluid chromatography with carbon dioxide–methanol mobile phases. J. Chromatogr. A 2004, 1048, 99–109. 10.1016/S0021-9673(04)01107-0. PubMed DOI
West C.; Elfakir C.; Lafosse M. Porous graphitic carbon: A versatile stationary phase for liquid chromatography. J. Chromatogr. A 2010, 1217, 3201–3216. 10.1016/j.chroma.2009.09.052. PubMed DOI
Bapiro T. E.; Richards F. M.; Jodrell D. I. Understanding the Complexity of Porous Graphitic Carbon (PGC) Chromatography: Modulation of Mobile-Stationary Phase Interactions Overcomes Loss of Retention and Reduces Variability. Anal. Chem. 2016, 88, 6190–6194. 10.1021/acs.analchem.6b01167. PubMed DOI PMC
West C.; Melin J.; Ansouri H.; Mengue Metogo M. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase. J. Chromatogr. A 2017, 1492, 136–143. 10.1016/j.chroma.2017.02.066. PubMed DOI
Plachká K.; Střítecký J.; Svec F.; Nováková L. The effect of column history in supercritical fluid chromatography: Practical implications. J. Chromatogr. A 2021, 1651, 462272.10.1016/j.chroma.2021.462272. PubMed DOI
Lafossas C.; Benoit-Marquié F.; Garrigues J. C. Analysis of the retention of tetracyclines on reversed-phase columns: Chemometrics, design of experiments and quantitative structure-property relationship (QSPR) study for interpretation and optimization. Talanta 2019, 198, 550–559. 10.1016/j.talanta.2019.02.051. PubMed DOI
Lipinski C. A.; Lombardo F.; Dominy B. W.; Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997, 23, 3–25. 10.1016/S0169-409X(96)00423-1. PubMed DOI
Petitjean M. Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J. Chem. Inf. Comput. 1992, 32, 331–337. 10.1021/ci00008a012. DOI
Bath P. A.; Poirrette A. R.; Willett P.; Allen F. H. The Extent of the Relationship between the Graph-Theoretical and the Geometrical Shape Coefficients of Chemical Compounds. J. Chem. Inf. Comput. 1995, 35, 714–716. 10.1021/ci00026a007. DOI
Muteki K.; Morgado J. E.; Reid G. L.; Wang J.; Xue G.; Riley F. W.; Harwood J. W.; Fortin D. T.; Miller I. J. Quantitative Structure Retention Relationship Models in an Analytical Quality by Design Framework: Simultaneously Accounting for Compound Properties, Mobile-Phase Conditions, and Stationary-Phase Properties. Ind. Eng. Chem. Res. 2013, 52, 12269–12284. 10.1021/ie303459a. DOI
Rafferty J. L.; Siepmann J. I.; Schure M. R. Mobile phase effects in reversed-phase liquid chromatography: A comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. J. Chromatogr. A 2011, 1218, 2203–2213. 10.1016/j.chroma.2011.02.012. PubMed DOI
Fu Q.; Dong W.; Ge D.; Ke Y.; Jin Y. Supercritical fluid chromatography based on reversed-phase/ion chromatography mixed-mode stationary phase for separation of spirooxindole alkaloids. J. Chromatogr. A 2023, 1705, 464163.10.1016/j.chroma.2023.464163. PubMed DOI
Hall L. H.; Kier L. B.. The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Modeling. In Reviews in Computational Chemistry; John Wiley & Sons, 1991; pp 367–422.
Kadlecová Z.; Kalíková K.; Folprechtová D.; Tesařová E.; Gilar M. Method for evaluation of ionic interactions in liquid chromatography. J. Chromatogr. A 2020, 1625, 461301.10.1016/j.chroma.2020.461301. PubMed DOI
Walter T. H.; Alden B. A.; Field J. A.; Lawrence N. L.; Osterman D. L.; Patel A. V.; DeLoffi M. A. Characterization of a highly stable mixed-mode reversed-phase/weak anion-exchange stationary phase based on hybrid organic/inorganic particles. J. Sep. Sci. 2021, 44, 1005–1014. 10.1002/jssc.202001136. PubMed DOI PMC
Bassler B. J.; Kaliszan R.; Hartwick R. A. Retention mechanisms on metallic stationary phases. J. Chromatogr. A 1989, 461, 139–147. 10.1016/S0021-9673(00)94283-3. DOI
Polyakova Y.; Ho Row K. HPLC of Some Polar Compounds on a Porous Graphitized Carbon HypercarbTM Column. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 3157–3168. 10.1080/10826070500330687. DOI
Oparin R. D.; Krestyaninov M. A.; Vorobyev E. A.; Pokrovskiy O. I.; Parenago O. O.; Kiselev M. G. An insight into possibility of chemical reaction between dense carbon dioxide and methanol. J. Mol. Liq. 2017, 239, 83–91. 10.1016/j.molliq.2016.12.027. DOI
Sobczyk L.; Grabowski S. J.; Krygowski T. M. Interrelation between H-Bond and Pi-Electron Delocalization. Chem. Rev. 2005, 105, 3513–3560. 10.1021/cr030083c. PubMed DOI
Russo M.; Camillo M. R. T.; La Tella R.; Rigano F.; Donato P.; Mondello L.; Dugo P. Principles and applications of porous graphitic carbon stationary phase in liquid chromatography: An update. J. Chromatogr. A 2024, 1719, 464728.10.1016/j.chroma.2024.464728. PubMed DOI