Columns in analytical-scale supercritical fluid chromatography: From traditional to unconventional chemistries
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article, Review
Grant support
21-27270S
Grantová Agentura České Republiky
SVV 260662
Univerzita Karlova v Praze
SVV 260666
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/15_003/0000465
Ministerstvo Školství, Mládeže a Tělovýchovy
- Keywords
- capillary columns, chiral stationary phases, packed columns, supercritical fluid chromatography, unconventional stationary phases,
- Publication type
- Journal Article MeSH
- Review MeSH
Within this review, we thoroughly explored supercritical fluid chromatography (SFC) columns used across > 3000 papers published from the first study carried out under SFC conditions in 1962 to the end of 2022. We focused on the open tubular capillary, packed capillary, and packed columns, their chemistries, dimensions, and trends in used stationary phases with correlation to their specific interactions, advantages, drawbacks, used instrumentation, and application field. Since the 1990s, packed columns with liquid chromatography and SFC-dedicated stationary phases for chiral and achiral separation are predominantly used. These stationary phases are based on silica support modified with a wide range of chemical moieties. Moreover, numerous unconventional stationary phases were evaluated, including porous graphitic carbon, titania, zirconia, alumina, liquid crystals, and ionic liquids. The applications of unconventional stationary phases are described in detail as they bring essential findings required for further development of the supercritical fluid chromatography technique.
See more in PubMed
Berger TA. The evolution and current state of instrumentation for analytical supercritical fluid chromatography. J Chromatogr B Anal Technol Biomed Life Sci. 2022;1211:10. https://doi.org/10.1016/j.jchromb.2022.123478
Zajickova Z, Novakova L, Svec F. Monolithic poly(styrene-co-divinylbenzene) columns for supercritical fluid chromatography-mass spectrometry analysis of polypeptide. Anal Chem. 2020;92(17):11525-9. https://doi.org/10.1021/acs.analchem.0c02874
Klesper E, Crowin AH, Turner DA. High pressure gas chromatography above critical temperature. J Org Chem. 1962;27:700-1.
Pilarova V, Plachka K, Khalikova MA, Svec F, Novakova L. Recent developments in supercritical fluid chromatography-mass spectrometry: is it a viable option for analysis of complex samples? Trac Trends Anal Chem. 2019;112:212-25. https://doi.org/10.1016/j.trac.2018.12.023
Blomberg LG, Demirbuker M, Hagglund I, Andersson PE. Supercritical-fluid chromatography-open-tubular vs packed-columns. Trac Trends Anal Chem. 1994;13(3):126-37. https://doi.org/10.1016/0165-9936(94)87077-2
Taylor LT. Separation of ionic analytes using supercritical fluid chromatography. LC GC Eur. 2009;22(5):232-43. [Online]. Available: <Go to ISI>://WOS:000265344900001.
Lesellier E, West C. The many faces of packed column supercritical fluid chromatography-a critical review. J Chromatogr A. 2015;1382:2-46. https://doi.org/10.1016/j.chroma.2014.12.083
Broeckhoven K. Advances in the limits of separation power in supercritical fluid chromatography. Trac Trends Anal Chem. 2022;146:12. https://doi.org/10.1016/j.trac.2021.116489
Saito M. History of supercritical fluid chromatography: instrumental development. J Biosci Bioeng. 2013;115(6):590-9. https://doi.org/10.1016/j.jbiosc.2012.12.008
Taylor LT, Karen Chang H-C. Packed column development in supercritical fluid chromatography. J Chromatogr Sci. 1990;28(7):357-66. https://doi.org/10.1093/chromsci/28.7.357
Hara S, Dobashi A, Kinoshita K, Hondo T, Saito M, Senda M. Carbon dioxide supercritical fluid chromatography on a chiral diamide stationary phase for the resolution of D- and L-amino acid derivatives. J Chromatogr A. 1986;371:153-8. https://doi.org/10.1016/S0021-9673(01)94702-8
Taylor LT. Trends in supercritical fluid chromatography: 1997. J Chromatogr Sci. 1997;35(8):374-82. https://doi.org/10.1093/chromsci/35.8.374
Berger TA. The quest for true ultra high performance supercritical fluid chromatography: a mini-review. Chromatogr Today. 2019;4-8.
Nováková L, Plachká K, Jakubec P. Ultra-high performance supercritical fluid chromatography-mass spectrometry. In: Holčapek M, Byrdwell WC, eds. Handbook of advanced chromatography/mass spectrometry techniques. Urbana, IL: AOCS Press; 2017. pp. 445-87.
Berger TA. Diffusion and dispersion in tubes in supercritical fluid chromatography using sub-2 μm packings. Chromatographia 2021;84(2):167-77. https://doi.org/10.1007/s10337-020-03996-8
Wicar S, Novak J. Retention volume in high-pressure gas chromatography. I. Thermodynamics of the specific retention volume. J Chromatogr. 1974;95(1):1-12.
Novotny M, Springston SR, Peaden PA, Fjeldsted JC, Lee ML. Capillary supercritical fluid chromatography. Anal Chem. 1981;53(3):407A-14A. https://doi.org/10.1021/ac00226a731
Fields SM, Kong RC, Fjeldsted JC, Lee ML, Peaden PA. Effect of column diameter on efficiency in capillary supercritical fluid chromatography. HRC CC J High Resolut Chromatogr Chromatogr Commun. 1984;7(6):312-8. https://doi.org/10.1002/jhrc.1240070605
Ashrafkhorassani M, Taylor LT, Henry RA. Packed-column supercritical fluid chromatography using deactivated stationary phases. Anal Chem. 1988;60(15):1529-33. https://doi.org/10.1021/ac00166a011
Smith RM, Sanagi MM. Application of packed-column supercritical fluid chromatography to the analysis of Barbiturates. J Pharm Biomed Anal. 1988;6(6-8):837-41. https://doi.org/10.1016/0731-7085(88)80099-2
Sait STL, Surviliene V, Jussi M, Gonzalez SV, Ciesielski TM, Jenssen BM, et al. Determination of steroid hormones in grey seal (Halichoerus Grypus) blood plasma using convergence chromatography tandem mass spectrometry. Talanta 2023;254:124109. https://doi.org/10.1016/j.talanta.2022.124109
Ganipisetty VNR, J D, dev G G, Bandari R, M P, D D, et al. Development of supercritical fluid (carbon dioxide) based ultra performance convergence chromatographic stability indicating assay method for the determination of clofarabine in injection. Anal Methods. 2013;5(24):7008-13. https://doi.org/10.1039/C3AY41561A
Gong X, Qi N, Wang X, Lin L, Li J. Ultra-performance convergence chromatography (Upc2) method for the analysis of biogenic amines in fermented foods. Food Chem. 2014;162:172-5. https://doi.org/10.1016/j.foodchem.2014.04.063
Fekete S, Fogwill M, Lauber MA. Pressure-enhanced liquid chromatography, a proof of concept: tuning selectivity with pressure changes and gradients. Anal Chem. 2022;94(22):7877-84. https://doi.org/10.1021/acs.analchem.2c00464
Macaudiere P, Caude M, Rosset R, Tambute A. Resolution of racemic amides and phosphine oxides on a β-cyclodextrin-bonded stationary phase by subcritical fluid chromatography. J Chromatogr A. 1987;405:135-43. https://doi.org/10.1016/S0021-9673(01)81755-6
Lesellier E. Overview of the retention in subcritical fluid chromatography with varied polarity stationary phases. J Sep Sci. 2008;31(8):1238-51. https://doi.org/10.1002/jssc.200800057
Tong D, Bartle KD, Clifford AA, Robinson RE. Unified gas and supercritical fluid chromatography on 50 μm id columns. HRC J High Res Chromatogr. 1992;15(8):505-9. [Online]. Available: <Go to ISI>://WOS:A1992JN01200003.
Molineau J, Hamel Y, Hideux M, Hennig P, Bertin S, Mauge F, et al. Analysis of short-chain bioactive peptides by unified chromatography-electrospray ionization mass spectrometry. Part I. Method development. J Chromatogr A. 2021;1658:462631. https://doi.org/10.1016/j.chroma.2021.462631
Berger TA. Instrumentation for analytical scale supercritical fluid chromatography. J Chromatogr A. 2015;1421:171-83. https://doi.org/10.1016/j.chroma.2015.07.062
Hirata Y. Supercritical fluid chromatography of various samples with different polarities. J Chromatogr. 1984;315(DEC):39-44. https://doi.org/10.1016/s0021-9673(01)90722-8
Kong RC, Fields SM, Jackson WP, Lee ML. Preparation of small-diameter capillary columns for gas and supercritical fluid chromatography. J Chromatogr. 1984;289(APR):105-16. https://doi.org/10.1016/s0021-9673(00)95080-5
French SB, Novotny M. Xenon, a unique mobile phase for supercritical fluid chromatography. Anal Chem. 1986;58(1):164-6. https://doi.org/10.1021/ac00292a040
Schwartz HE, Brownlee RG. Hydrocarbon group-analysis of gasolines with microbore supercritical fluid chromatography and flame ionization detection. J Chromatogr. 1986;353:77-93. https://doi.org/10.1016/s0021-9673(01)87078-3
Jordan JW, Taylor LT. Mobile phase and flow cell comparisons in packed-column supercritical fluid chromatography fourier-transform infrared spectrometry. J Chromatogr Sci. 1986;24(3):82-8. https://doi.org/10.1093/chromsci/24.3.82
Novotny M, Konishi M, Hirose A, Gluckman J, Wiesler D. High molecular-weight substance profiles obtained from fossil-fuels with microcolumn liquid-chromatography. Fuel. 1985;64(4):523-7. https://doi.org/10.1016/0016-2361(85)90088-2
Raynor M, Sewram V, Venayagamoorthy M. Capillary column SFC and requirements. 2018.
Lee ML, Markides KE. analytical supercritical fluid chromatography and extraction. 1990.
Kong RC, Woolley CL, Fields SM, Lee ML. Deactivation of small-diameter fused-silica capillary columns for gas and supercritical fluid chromatography. Chromatographia. 1984;18(7):362-6. https://doi.org/10.1007/bf02262481
Schoenmakers PJ. Supercritical-fluid chromatography: open columns vs packed columns. J High Resolut Chromatogr. 1988;11(3):278-82. https://doi.org/10.1002/jhrc.1240110311
Peaden PA, Lee ML. Theoretical treatment of resolving power in open tubular column supercritical fluid chromatography. J Chromatogr A. 1983;259:1-16. https://doi.org/10.1016/S0021-9673(01)87974-7
Schutjes CPM, Vermeer EA, Cramers CA. Deactivation and coating of non-polar 50-μm I.D. capillary columns. J Chromatogr A. 1983;279:49-57. https://doi.org/10.1016/S0021-9673(01)93599-X
Springston SR, Novotny M. Mobile-phase solute mass-transfer in supercritical fluid chromatography. Anal Chem. 1984;56(11):1762-6. https://doi.org/10.1021/ac00275a002
Taylor LT. Supercritical fluid chromatography in perspective. Chim Oggi-Chem Today. 2008;26(5):14-8. [Online]. Available: <Go to ISI>://WOS:000259811500006.
Xie LQ, Markides KE,, Lee ML. Biomedical applications of analytical supercritical fluid separation techniques. Anal Biochem. 1992;200(1):7-19. https://doi.org/10.1016/0003-2697(92)90269-d
Smith RD, Udseth HR, Wright BW. Rapid and high-resolution capillary Supercritical Fluid Chromatography (SFC) and SFC/MS of trichothecene mycotoxins. J Chromatogr Sci. 1985;23(5):192-9. https://doi.org/10.1093/chromsci/23.5.192
White CM, Houck RK. Analysis of monoglycerides, diglycerides, and triglycerides by capillary supercritical fluid chromatography. HRC CC J High Resolut Chromatogr Chromatogr Commun. 1985;8(6):293-6. https://doi.org/10.1002/jhrc.1240080605
Chester TL, Innis DP, Owens GD. Separation of sucrose polyesters by capillary supercritical-fluid chromatography flame ionization detection with robot-pulled capillary restrictors. Anal Chem. 1985;57(12):2243-7. https://doi.org/10.1021/ac00289a016
Richter BE. Modified flame ionization detector for the analysis of large molecular-weight polar compounds by capillary supercritical fluid chromatography. HRC CC J High Resolut Chromatogr Chromatogr Commun. 1985;8(6):297-300. https://doi.org/10.1002/jhrc.1240080606
Woolley CL, Markides KE, Lee ML, Bartle KD. Deactivation of small diameter fused silica capillary columns with organosilicon hydrides. J High Resolut Chromatogr. 1986;9(9):506-14. https://doi.org/10.1002/jhrc.1240090904
Welsch T, Engewald W, Klaucke C. Zur desaktivierung von glaskapillaren mittels silanisierung. Chromatographia 1977;10(1):22-4. https://doi.org/10.1007/BF02291585
Schomburg G. Practical limitations of capillary gas chromatography. J High Resolut Chromatogr. 1979;2(7):461-74. https://doi.org/10.1002/jhrc.1240020717
Blomberg L, Markides K, Wännman T. Modification of glass capillary columns by cyclic (3,3,3-trifluoropropyl)methylsiloxanes. J High Resolut Chromatogr. 1980;3(10):527-8. https://doi.org/10.1002/jhrc.1240031010
Blomberg L, Buijten J, Markides K, Wannman T. Peroxide-initiated insitu curing of silicone gums for capillary column gas-chromatography. J Chromatogr. 1982;239(APR):51-60. https://doi.org/10.1016/s0021-9673(00)81967-6
Wright BW, Peaden PA, Lee ML. Effect of viscosity on stationary phase stability in capillary column gas chromatography. J High Resolut Chromatogr. 1982;5(8):413-6. https://doi.org/10.1002/jhrc.1240050804
Richter BE, Kuei JC, Park NJ, Crowley SJ, Bradshaw JS, Lee ML. Azo compounds for free radical crosslinking of polysiloxane stationary phases. J High Resolut Chromatogr. 1983;6(7):371-4. https://doi.org/10.1002/jhrc.1240060705
Richter BE, Kuei JC, Shelton JI, Castle LW, Bradshaw JS, Lee ML. Polysiloxane stationary phases containing tolyl and cyanopropyl groups: oxidation during cross-linking. J Chromatogr A. 1983;279:21-30. https://doi.org/10.1016/S0021-9673(01)93596-4
Robinson RE, Tong DX, Moulder R, Bartle KD, Clifford AA. Unified open tubular column chromatography-sequential gas-chromatography, at normal pressures, and supercritical fluid chromatography on the same column. J Microcolumn Sep. 1991;3(5):403-9. https://doi.org/10.1002/mcs.1220030504
Tong DX, Bartle KD. Band broadening during mobile-phase change in unified chromatography (GC-SFC). J Microcolumn Sep. 1993;5(3):237-43. https://doi.org/10.1002/mcs.1220050308
Tong DX, Bartle KD, Robinson RE, Altham P. Unified chromatography in petrochemical analysis. J Chromatogr Sci. 1993;31(3):77-81. https://doi.org/10.1093/chromsci/31.3.77
Tong DX, Bartle KD, Clifford AA, Robinson RE. Unified chromatograph for gas-chromatography, supercritical-fluid chromatography and micro-liquid chromatography. Analyst. 1995;120(10):2461-7. https://doi.org/10.1039/an9952002461
Tong DX, Bartle KD, Clifford AA. Preparation and evaluation of supercritical carbon dioxide-packed capillary columns for HPLC and SFC. J Microcolumn Sep. 1994;6(3):249-55. https://doi.org/10.1002/mcs.1220060309
Bartle KD, Clifford AA, Myers P, Robson MM, Seale K, Tong D, et al. Packed capillary column chromatography with gas, supercritical, and liquid mobile phases. In: Parcher JF, Chester TL, eds. Unified chromatography. Washington: Amer Chemical Soc; 2000, pp. 142-67.
Hirata Y. Column technology for packed capillary columns. J Microcolumn Sep. 1990;2(5):214-21. https://doi.org/10.1002/mcs.1220020503
Olesik SV, French SB, Novotny M. Development of capillary supercritical fluid chromatography fourier-transform infrared spectrometry. Chromatographia 1984;18(9):489-95. https://doi.org/10.1007/bf02267233
Tong D, Bartle KD, Clifford AA, Edge AM. Theoretical studies of the preparation of packed capillary columns for chromatography. J Microcolumn Sep. 1995;7(3):265-78. https://doi.org/10.1002/mcs.1220070311
Takeuchi T, Ishii D, Saito M, Hibi K. Supercritical fluid chromatography with micro packed-columns and carbon-dioxide as a mobile phase. J Chromatogr. 1984;295(2):323-31. https://doi.org/10.1016/s0021-9673(01)87634-2
Shafer KH, Pentoney SL, Griffiths PR. Supercritical fluid chromatography fourier-transform infrared spectrometry with an automatic diffuse reflectance interface. Anal Chem. 1986;58(1):58-64. https://doi.org/10.1021/ac00292a015
Ibañez E, Li W, Malik A, Lee ML. Low flow rate modifier addition in packed capillary column supercritical fluid chromatography. J High Resolut Chromatogr. 1995;18(9):559-63. https://doi.org/10.1002/jhrc.1240180909
Almquist SR, Petersson P, Walther W, Markides KE. Direct and indirect approaches to enantiomeric separation of benzodiazepines using micro column techniques. J Chromatogr A. 1994;679(1):139-46. https://doi.org/10.1016/0021-9673(94)80320-x
Anton K, Bach M, Berger C, Walch F, Jaccard G, Carlier Y. From potential to practice-relevant industrial applications of packed-column supercritical-fluid chromatography. J Chromatogr Sci. 1994;32(10):430-8. https://doi.org/10.1093/chromsci/32.10.430
Ashrafkhorassani M, Levy JM. Addition of modifier in supercritical-fluid chromatography using a microbore reciprocating pump. Chromatographia. 1995;40(1-2):78-84. https://doi.org/10.1007/bf02274611
Ashrafkhorassani M, Taylor LT. Analysis of propellant stabilizer components via packed and capillary supercritical fluid chromatography fourier-transform infrared spectrometry. HRC J High Resolut Chromatogr. 1989;12(1):40-4. [Online]. Available: <Go to ISI>://WOS:A1989T795400010.
Ashrafkhorassani M, Taylor LT. Qualitative supercritical fluid chromatography fourier-transform infrared-spectroscopy study of methylene-chloride and supercritical carbon-dioxide extracts of double-base propellant. Anal Chem. 1989;61(2):145-8. https://doi.org/10.1021/ac00177a013
Zegers BN, Hogenboom AC, Dekkers SEG, Lingeman H, Brinkman UAT. Packed capillary supercritical-fluid chromatography of organophosphorus pesticides-selective detection and applications. J Microcolumn Sep. 1994;6(1):55-62. https://doi.org/10.1002/mcs.1220060111
Kalinoski HT, Smith RD. Pressure programmed microbore column supercritical fluid chromatography-mass spectrometry for the determination of organo-phosphorus insecticides. Anal Chem. 1988;60(6):529-35. https://doi.org/10.1021/ac00157a007
Payne KM, Davies IL, Bartle KD, Markides KE, Lee ML. Multidimensional packed capillary column supercritical-fluid chromatography using a flow-switching interface. J Chromatogr. 1989;477(1):161-8. https://doi.org/10.1016/s0021-9673(01)89630-8
Li SFY. Techniques for coupling supercritical fluid chromatography to Icp-Aes. At Spectrosc. 1989;10(2):66-7. [Online]. Available: <Go to ISI>://WOS:A1989U443700002.
Brede C, Lundanes E. Identification of diflubenzuron by packed-capillary supercritical-fluid chromatography mass-spectrometry with electron-capture negative ionization. J Chromatogr A. 1995;712(1):95-101. https://doi.org/10.1016/0021-9673(95)00299-3
Guerrero F, Rocca JL. Retention behavior of cyanodecyl-bonded silica for sfc analysis of alkyl polyethyleneglycol ethers. Chromatographia. 1995;40(9-10):563-70. https://doi.org/10.1007/bf02290269
Wallenborg SR, Markides KE, Nyholm L. Development of an amperometric detector for packed capillary column supercritical fluid chromatography. Anal Chem. 1997;69(3):439-45. https://doi.org/10.1021/ac960669h
Geertsen V, Chollet H, Marty P, Moulin C. Determination of uranium by packed-column supercritical fluid chromatography with 1-phenyl-3-methyl-4-benzoylpyrazolin-5-one. Ind Eng Chem Res. 2000;39(12):4877-81. https://doi.org/10.1021/ie000248x
Bruheim I, Lundanes E, Greibrokk T. Supercritical fluid sample introduction of unstable organometallic compounds in supercritical fluid chromatography. HRC J High Resolut Chromatogr. 2000;23(5):386-8. [Online]. Available: <Go to ISI>://WOS:000087469900006.
Wu NJ, Chen Z, Medina JC, Bradshaw JS, Lee ML. Fast chiral separations using packed capillary columns and near-critical fluid carbon dioxide mobile phase. J Microcolumn Sep. 2000;12(8):454-61. [Online]. Available: <Go to ISI>://WOS:000165352800004.
Tuomola M, Hakala M, Manninen P. Determination of androstenone in pig fat using packed column supercritical fluid chromatography mass spectrometry. J Chromatogr B. 1998;719(1-2):25-30. https://doi.org/10.1016/s0378-4347(98)00409-5
Hoke SH, Tomlinson JA, Bolden RD, Morand KL, Pinkston JD, Wehmeyer KR. Increasing bioanalytical throughput using Pcsfc-Ms/Ms: 10 minutes per 96-well plate. Anal Chem. 2001;73(13):3083-8. https://doi.org/10.1021/ac0014820
Hatada K, Kitayama T, Ute K, Nishiura T. Polymers of alpha-substituted and beta-substituted acrylates with controlled structures. Macromol Symp. 1995;89:465-78. https://doi.org/10.1002/masy.19950890143
Jentoft RE, Gouw TH. Analysis of polynuclear aromatic-hydrocarbons in automobile exhaust by supercritical fluid chromatography. Anal Chem. 1976;48(14):2195-200. https://doi.org/10.1021/ac50008a036
Schmitz FP, Klesper E. Supercritical fluid chromatography of oligostyrenes by means of eluent gradients. Macromol Rapid Commun. 1981;2(12):735-9. [Online]. Available: <Go to ISI>://WOS:A1981MZ27400007.
Jentoft RE, Gouw TH. Apparatus for supercritical fluid chromatography with carbon-dioxide as mobile phase. Anal Chem. 1972;44(4):681-6. https://doi.org/10.1021/ac60312a038
Novotny M, Bertsch W, Zlatkis A. Temperature and pressure effects in supercritical-fluid chromatography. J Chromatogr. 1971;61(1):17-28. https://doi.org/10.1016/s0021-9673(00)92380-x
Bartmann D, Schneide GM. Experimental results and physicochemical aspects of supercritical fluid chromatography with carbon-dioxide as mobile phase. J Chromatogr. 1973;83(AUG 29):135-45. https://doi.org/10.1016/s0021-9673(00)97034-1
Nieman JA, Rogers LB. Supercritical fluid chromatography applied to characterization of a siloxane-based gas-chromatographic stationary phase. Sep Sci. 1975;10(5):517-45. https://doi.org/10.1080/00372367508058039
Klesper E, Hartmann W. Parameters in supercritical fluid chromatography of styrene oligomers. J Polym Sci Part C Polym Lett. 1977;15(12):707-12. https://doi.org/10.1002/pol.1977.130151201
Si-Hung L, Bamba T. Current state and future perspectives of supercritical fluid chromatography. TrAC Trends Anal Chem. 2022;149:116550. https://doi.org/10.1016/j.trac.2022.116550
Lesellier E. Usual, unusual and unbelievable retention behavior in achiral supercritical fluid chromatography: review and discussion. J Chromatogr A. 2020;1614:460582. https://doi.org/10.1016/j.chroma.2019.460582
Gere DR. Supercritical fluid chromatography. Science 1983;222(4621):253-9. https://doi.org/10.1126/science.6414083
Crowther JB, Henion JD. Supercritical fluid chromatography of polar drugs using small-particle packed-columns with mass-spectrometric detection. Anal Chem. 1985;57(13):2711-6. https://doi.org/10.1021/ac00290a062
Sugiyama K, Saito M, Hondo T, Senda M. New double-stage separation analysis method-directly coupled laboratory-scale supercritical fluid extraction supercritical fluid chromatography, monitored with a multiwavelength ultraviolet detector. J Chromatogr. 1985;332(SEP):107-16. https://doi.org/10.1016/s0021-9673(01)83289-1
Carraud P, Thiebaut D, Caude M, Rosset R, Lafosse M, Dreux M. Supercritical fluid chromatography light-scattering detector-a promising coupling for polar compounds analysis with packed-columns. J Chromatogr Sci. 1987;25(9):395-8. https://doi.org/10.1093/chromsci/25.9.395
Poole CF. Stationary phases for packed-column supercritical fluid chromatography. J Chromatogr A. 2012;1250:157-71. https://doi.org/10.1016/j.chroma.2011.12.040
West C, Lemasson E, Bertin S, Hennig P, Lesellier E. An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography. J Chromatogr A. 2016;1440:212-28. https://doi.org/10.1016/j.chroma.2016.02.052
Taguchi K, Fukusaki E, Bamba T. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. J Chromatogr A. 2014;1362:270-7. https://doi.org/10.1016/j.chroma.2014.08.003
Molineau J, Hideux M, Hennig P, Bertin S, Mauge F, Lesellier E, et al. Analysis of short-chain bioactive peptides by unified chromatography-electrospray ionization mass spectrometry. Part II. comparison to reversed-phase ultra-high performance liquid chromatography. J Chromatogr A. 2022;1663:462771. https://doi.org/10.1016/j.chroma.2021.462771
White C, Burnett J. Integration of supercritical fluid chromatography into drug discovery as a routine support tool-Ii. Investigation and evaluation of supercritical fluid chromatography for achiral batch purification. J Chromatogr A. 2005;1074(1-2):175-85. https://doi.org/10.1016/j.chroma.2005.02.087
Sandvik TA, Husa A, Buchmann M, Lundanes E. Routine supercritical fluid chromatography tandem mass spectrometry method for determination of vitamin K1 extracted from serum with a 96-well solid-phase extraction method. J Appl Lab Med. 2017;1(6):637-48. https://doi.org/10.1373/jalm.2016.021717
Jumaah F, Larsson S, Essen S, Cunico LP, Holm C, Turner C, et al. A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography-mass spectrometry. J Chromatogr A. 2016;1440:191-200. https://doi.org/10.1016/j.chroma.2016.02.043
Hou JJ, Cao CM, Xu YW, Yao S, Cai LY, Long HL, et al. Exploring lipid markers of the quality of coix seeds with different geographical origins using supercritical fluid chromatography mass spectrometry and chemometrics. Phytomedicine. 2018;45:1-7. https://doi.org/10.1016/j.phymed.2018.03.010
Sun MZ, Liden G, Sandahl M, Turner C. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation. J Sep Sci. 2016;39(16):3123-9. https://doi.org/10.1002/jssc.201600169
Arigo A, Russo M, Camillo MRT, Dugo P, Mondello L, Zoccali M. Supercritical fluid chromatography-tandem mass spectrometry of oxygen heterocyclic compounds in citrus essential oils. Anal Bioanal Chem. 2022;414(17):4821-36. https://doi.org/10.1007/s00216-022-04105-4
Pfeifer I, Murauer A, Ganzera M. Determination of coumarins in the roots of angelica dahurica by supercritical fluid chromatography. J Pharm Biomed Anal. 2016;129:246-51. https://doi.org/10.1016/j.jpba.2016.07.014
Patil ST, Sundaresan M, Bhoir IC, Bhagwat AM. Packed column supercritical fluid chromatographic separation and estimation of acetaminophen, diclofenac sodium and methocarbamol in pharmaceutical dosage forms. Talanta 1998;47(1):3-10. https://doi.org/10.1016/s0039-9140(98)00045-9
Patil ST, Bhoir IC, Sundaresan M. Supercritical fluid chromatographic method using phenyl packed column for determination of phenobarbitone and phenytoin sodium in dosage form. Anal Chim Acta. 1999;384(2):143-50. https://doi.org/10.1016/s0003-2670(98)00820-4
Li B, Guo W, Ramsey ED. Solubility measurements of chloramphenicol in supercritical fluid Co2 using static solubility apparatus interfaced with online supercritical fluid chromatography. J Chem Eng Data. 2020;65(1):153-9. https://doi.org/10.1021/acs.jced.9b00831
Galea C, Mangelings D, Heyden YV. Characterization and classification of stationary phases in HPLC and SFC-a review. Anal Chim Acta. 2015;886:1-15. https://doi.org/10.1016/j.aca.2015.04.009
Walters MJ. Classification of octadecyl-bonded liquid chromatography columns. J Assoc Off Anal Chem. 2020;70(3):465-9. https://doi.org/10.1093/jaoac/70.3.465
Kimata K, Iwaguchi K, Onishi S, Jinno K, Eksteen R, Hosoya K, et al. Chromatographic characterization of silica C18 packing materials. Correlation between a preparation method and retention behavior of stationary phase. J Chromatogr Sci. 1989;27(12):721-8. https://doi.org/10.1093/chromsci/27.12.721
Edge T, James M, Colin P, Bylikin S, Field J, Euerby M. An assessment of stationary phase selectivity in SFC. LCGC Suppl. 2022;40(s6):9-22. [Online]. Available: https://www.chromatographyonline.com/view/an-assessment-of-stationary-phase-selectivity-in-sfc
Engelhardt H, Jungheim M. Comparison and characterization of reversed phases. Chromatographia 1990;29(1):59-68. https://doi.org/10.1007/BF02261141
Galushko SV. The calculation of retention and selectivity in reversed-phase liquid chromatography Ii. Methanol-water eluents. Chromatographia 1993;36(1):39-42. https://doi.org/10.1007/BF02263833
Neue UD, O'Gara JE, Méndez A. Selectivity in reversed-phase separations: influence of the stationary phase. J Chromatogr A. 2006;1127(1):161-74. https://doi.org/10.1016/j.chroma.2006.06.006
Blackwell J, Stringham R. Comparison of various bulk fluids and modifiers as near-critical mobile phases on a polymeric column using linear solvation energy relationships. J High Resolut Chromatogr. 1997;20:631-7. https://doi.org/10.1002/jhrc.1240201203
West C, Khalikova MA, Lesellier E, Heberger K. Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography. J Chromatogr A. 2015;1409:241-50. https://doi.org/10.1016/j.chroma.2015.07.071
West C, Lesellier E. Characterization of stationary phases in subcritical fluid chromatography by the solvation parameter model I. Alkylsiloxane-bonded stationary phases. J Chromatogr A. 2006;1110(1-2):181-90. https://doi.org/10.1016/j.chroma.2006.01.125
West C, Lesellier E. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model Iii. Polar stationary phases. J Chromatogr A. 2006;1110(1-2):200-13. https://doi.org/10.1016/j.chroma.2006.01.109
West C, Lesellier E. Characterisation of stationary phasese in subcritical fluid chromatography with solvation parameter model Iv-aromatic stationary phases. J Chromatogr A. 2006;1115(1-2):233-45. https://doi.org/10.1016/j.chroma.2006.02.050
West C, Lesellier E. Characterisation of stationary phases in subcritical fluid chromatography by the solvation parameter model Ii. comparison tools. J Chromatogr A. 2006;1110(1-2):191-9. https://doi.org/10.1016/j.chroma.2006.02.002
West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid chromatography. J Chromatogr A. 2008;1191(1-2):21-39. https://doi.org/10.1016/j.chroma.2008.02.108
Gros Q, Molineau J, Noireau A, Duval J, Bamba T, Lesellier E, et al. Characterization of stationary phases in supercritical fluid chromatography including exploration of shape selectivity. J Chromatogr A. 2021;1639:14. https://doi.org/10.1016/j.chroma.2021.461923
Si-Hung L, Bamba T. A review of retention mechanism studies for packed column supercritical fluid chromatography. Anal Sci Adv. 2021;2(1-2):47-67. https://doi.org/10.1002/ansa.202000144
Lesellier E, West C. Sigma pider diagram: a universal and versatile approach for system comparison and classification. Part 2: stationary phase properties. J Chromatogr A. 2018;1574:71-81. https://doi.org/10.1016/j.chroma.2018.09.004
Lesellier E. Extension of the carotenoid test to superficially porous C18 bonded phases, aromatic ligand types and new classical C18 bonded phases. J Chromatogr A. 2012;1266:34-42. https://doi.org/10.1016/j.chroma.2012.09.068
Huopalahti RP, Henion JD. Application of supercritical fluid extraction and high performance liquid chromatography mass spectrometry for the determination of some anabolic agents directly from bovine tissue samples. J Liq Chromatogr Relat Technol. 1996;19(1):69-87. https://doi.org/10.1080/10826079608006290
West C, Lesellier E. Chemometric methods to classify stationary phases for achiral packed column supercritical fluid chromatography. J Chemom. 2012;26(3-4):52-65. https://doi.org/10.1002/cem.1414
Borges EM. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography. J Chromatogr Sci. 2014;53(4):580-97. https://doi.org/10.1093/chromsci/bmu090
Méndez A, Bosch E, Rosés M, Neue UD. Comparison of the acidity of residual silanol groups in several liquid chromatography columns. J Chromatogr A. 2003;986(1):33-44. https://doi.org/10.1016/S0021-9673(02)01899-X
Nomura A, Yamada J, Tsunoda K, Fukushima K, Nobuhara K. Silica-based inert packings for supercritical fluid chromatography. Anal Sci. 1989;5(3):335-8. https://doi.org/10.2116/analsci.5.335
Fairchild JN, Brousmiche DW, Hill JF, Morris MF, Boissel CA, Wyndham KD. Chromatographic evidence of silyl ether formation (Sef) in supercritical fluid chromatography. Anal Chem. 2015;87(3):1735-42. https://doi.org/10.1021/ac5035709
Hirata Y. Comparison of chromatographic behavior of silica and chemically bonded phases in supercritical fluid chromatography. J Chromatogr. 1984;315(DEC):31-7. https://doi.org/10.1016/s0021-9673(01)90721-6
Plachka K, Stritecky J, Svec F, Novakova L. The effect of column history in supercritical fluid chromatography: practical implications. J Chromatogr A. 2021;1651:462272. https://doi.org/10.1016/j.chroma.2021.462272
Ebinger K, Weller HN. Comparative assessment of achiral stationary phases for high throughput analysis in supercritical fluid chromatography. J Chromatogr A. 2014;1332:73-81. https://doi.org/10.1016/j.chroma.2014.01.060
Klesper E, Hartmann W. Apparatus and separations in supercritical fluid chromatography. Eur Polym J. 1978;14(2):77-88. https://doi.org/10.1016/0014-3057(78)90070-8
Klesper E, Hartmann W. Supercritical fluid chromatography of styrene oligomers. J Polym Sci Part C Polym Lett. 1977;15(1):9-16. https://doi.org/10.1002/pol.1977.130150102
Berger TA. Demonstration of high speeds with low pressure drops using 1.8 Mu M particles in SFC. Chromatographia. 2010;72(7-8):597-602. https://doi.org/10.1365/s10337-010-1699-2
Grand-Guillaume Perrenoud A, Veuthey JL, Guillarme D. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. J Chromatogr A. 2012;1266:158-67. https://doi.org/10.1016/j.chroma.2012.10.005
Farrell WP. Practical approaches to column selection for supercritical fluid chromatography. In: Poole CF, ed. Supercritical fluid chromatography. Amsterdam, NL: Elsevier; 2017. pp. 57-101.
Majors RE, Berger B, Berger T. A review of column developments for supercritical fluid chromatography. LC GC N Am. 2010;28(5):344-57.
Lesellier E. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ods bonded phases. J Chromatogr A. 2012;1228:89-98. https://doi.org/10.1016/j.chroma.2011.11.058
Mourier PA, Eliot E, Caude MH, Rosset RH, Tambute AG. Supercritical and subcritical fluid chromatography on a chiral stationary phase for the resolution of phosphine oxide enantiomers. Anal Chem. 1985;57(14):2819-23. https://doi.org/10.1021/ac00291a017
West C, Khater S. Characterization of retention and separation mechanisms with pirkle-type enantioselective stationary phases in supercritical fluid chromatography. J Chromatogr A. 2020;1626:461352. https://doi.org/10.1016/j.chroma.2020.461352
Ismail OH, Losacco GL, Mazzoccanti G, Ciogli A, Villani C, Catani M, et al. Unmatched kinetic performance in enantioselective supercritical fluid chromatography by combining latest generation Whelk-O1 chiral stationary phases with a low-dispersion in-house modified equipment. Anal Chem. 2018;90(18):10828-36. https://doi.org/10.1021/acs.analchem.8b01907
Macaudière P, Caude M, Rosset R, Tambuté A. Chiral resolution of a series of 3-thienylcyclohexylglycolic acids by liquid or subcritical fluid chromatography: a mechanistic study. J Chromatogr A. 1988;450(3):255-69. https://doi.org/10.1016/S0021-9673(01)83579-2
Kot A, Sandra P, Venema A. Sub- and supercritical fluid chromatography on packed columns: a versatile tool for the enantioselective separation of basic and acidic drugs. J Chromatogr Sci. 1994;32(10):439-48. https://doi.org/10.1093/chromsci/32.10.439
Khater S, West C. Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris-(3,5-dimethylphenylcarbamate) stationary phases. J Chromatogr A. 2014;1373:197-210. https://doi.org/10.1016/j.chroma.2014.11.033
Khater S, Zhang YR, West C. Insights into chiral recognition mechanism in supercritical fluid chromatography Iii. Non-halogenated polysaccharide stationary phases. J Chromatogr A. 2014;1363:278-93. https://doi.org/10.1016/j.chroma.2014.06.084
Khater S, Zhang YR, West C. Insights into chiral recognition mechanism in supercritical fluid chromatography Iv. Chlorinated polysaccharide stationary phases. J Chromatogr A. 2014;1363:294-310. https://doi.org/10.1016/j.chroma.2014.06.026
West C, Guenegou G, Zhang YR, Morin-Allory L. Insights into chiral recognition mechanisms in supercritical fluid chromatography. Ii. Factors contributing to enantiomer separation on tris-(3,5-dimethylphenylcarbamate) of amylose and cellulose stationary phases. J Chromatogr A. 2011;1218(15):2033-57. https://doi.org/10.1016/j.chroma.2010.11.085
West C, Zhang YR, Morin-Allory L. Insights into chiral recognition mechanisms in supercritical fluid chromatography. I. Non-enantiospecific interactions contributing to the retention on tris-(3,5-dimethylphenylcarbamate) amylose and cellulose stationary phases. J Chromatogr A. 2011;1218(15):2019-32. https://doi.org/10.1016/j.chroma.2010.11.084
Fernandes C, Teixeira J, Pinto MMM, Tiritan ME. Strategies for preparation of chiral stationary phases: progress on coating and immobilization methods. Molecules. 2021;26(18):5477. [Online]. Available: https://www.mdpi.com/1420-3049/26/18/5477
Dascalu A-E, Ghinet A, Chankvetadze B, Lipka E. Comparison of dimethylated and methylchlorinated amylose stationary phases, coated and covalently immobilized on silica, for the separation of some chiral compounds in supercritical fluid chromatography. J Chromatogr A. 2020;1621:461053. https://doi.org/10.1016/j.chroma.2020.461053
Khater S, Zhang Y, West C. In-depth characterization of six cellulose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases in supercritical fluid chromatography. J Chromatogr A. 2013;1303:83-93. https://doi.org/10.1016/j.chroma.2013.06.040
Kalíková K, Šlechtová T, Vozka J, Tesařová E. Supercritical fluid chromatography as a tool for enantioselective separation; a review. Anal Chim Acta. 2014;821:1-33. https://doi.org/10.1016/j.aca.2014.02.036
Pirzada Z, Personick M, Biba M, Gong X, Zhou L, Schafer W, et al. Systematic evaluation of new chiral stationary phases for supercritical fluid chromatography using a standard racemate library. J Chromatogr A. 2010;1217(7):1134-8. https://doi.org/10.1016/j.chroma.2009.10.004
Horáček O, Nováková L, Tüzün E, Grüner B, Švec F, Kučera R. Advanced tool for chiral separations of anionic and zwitterionic (metalla)carboranes: supercritical fluid chromatography. Anal Chem. 2022;94(50):17551-8. https://doi.org/10.1021/acs.analchem.2c03895
Lämmerhofer M, Lindner W. Quinine and quinidine derivatives as chiral selectors I. brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A. 1996;741(1):33-48. https://doi.org/10.1016/0021-9673(96)00137-9
D. C. Technologies. Chiral selectors names & structures. https://chiraltech.com/wp-content/uploads/2022/04/Daicel-Chiral-Tech_Poster_Apr-2022_ELECTRONIC.pdf Accessed 2002
Dascalu A-E, Speybrouck D, Billamboz M, Corens D, Ghinet A, Lipka E. Analytical and preparative enantioseparations in supercritical fluid chromatography using different brands of immobilized cellulose tris (3,5-dichlorophenylcarbamate) columns: some differences. J Chromatogr A. 2020;1622:461125. https://doi.org/10.1016/j.chroma.2020.461125
Pell R, Lindner W. Potential of chiral anion-exchangers operated in various subcritical fluid chromatography modes for resolution of chiral acids. J Chromatogr A. 2012;1245:175-82. https://doi.org/10.1016/j.chroma.2012.05.023
Raimbault A, Ma CMA, Ferri M, Bäurer S, Bonnet P, Bourg S, et al. Cinchona-based zwitterionic stationary phases: exploring retention and enantioseparation mechanisms in supercritical fluid chromatography with a fragmentation approach. J Chromatogr A. 2020;1612:460689. https://doi.org/10.1016/j.chroma.2019.460689
Wolrab D, Frühauf P, Gerner C, Kohout M, Lindner W. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger. J Chromatogr A. 2017;1517:165-75. https://doi.org/10.1016/j.chroma.2017.08.022
Wolrab D, Frühauf P, Kolderová N, Kohout M. Strong cation- and zwitterion-exchange-type mixed-mode stationary phases for separation of pharmaceuticals and biogenic amines in different chromatographic modes. J Chromatogr A. 2021;1635:461751. https://doi.org/10.1016/j.chroma.2020.461751
Medvedovici A, Sandra P, Toribio L, David F. Chiral packed column subcritical fluid chromatography on polysaccharide and macrocyclic antibiotic chiral stationary phases. J Chromatogr A. 1997;785(1):159-71. https://doi.org/10.1016/S0021-9673(97)00585-2
Roy D, Armstrong DW. Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles. J Chromatogr A. 2019;1605:360339. https://doi.org/10.1016/j.chroma.2019.06.060
Khater S, West C. Characterization of three macrocyclic glycopeptide stationary phases in supercritical fluid chromatography. J Chromatogr A. 2019;1604:460485. https://doi.org/10.1016/j.chroma.2019.460485
Ansell RJ, Kuah JKL, Wang D, Jackson CE, Bartle KD, Clifford AA. Imprinted polymers for chiral resolution of (±)-ephedrine, 4: packed column supercritical fluid chromatography using molecularly imprinted chiral stationary phases. J Chromatogr A. 2012;1264:117-23. https://doi.org/10.1016/j.chroma.2012.09.069
Salvador A, Herbreteau B, Dreux M. Preliminary studies of supercritical-fluid chromatography on porous graphitic carbon with methylated cyclodextrin as chiral selector. Chromatographia. 2000;53(3):207-9. https://doi.org/10.1007/BF02491572
Nováková L, Douša M. General screening and optimization strategy for fast chiral separations in modern supercritical fluid chromatography. Anal Chim Acta. 2017;950:199-210. https://doi.org/10.1016/j.aca.2016.11.002
Sciascera L, Ismail O, Ciogli A, Kotoni D, Cavazzini A, Botta L, et al. Expanding the potential of chiral chromatography for high-throughput screening of large compound libraries by means of sub-2 μm whelk-O 1 stationary phase in supercritical fluid conditions. J Chromatogr A. 2015;1383:160-8. https://doi.org/10.1016/j.chroma.2015.01.042
Welch CJ, Biba M, Gouker JR, Kath G, Augustine P, Hosek P. Solving multicomponent chiral separation challenges using a new sfc tandem column screening tool. Chirality. 2007;19(3):184-9. https://doi.org/10.1002/chir.20357
Losacco GL, DaSilva JO, Haidar Ahmad IA, Mangion I, Berger TA, Regalado EL. Parallel chiral sub/supercritical fluid chromatography screening as a framework for accelerated purification of pharmaceutical targets. J Chromatogr A. 2022;1674:463094. https://doi.org/10.1016/j.chroma.2022.463094
Gyllenhaal O. Packed column supercritical fluid chromatography of a peroxysome proliferator-activating receptor agonist drug: achiral and chiral purity of substance, formulation assay and its enantiomeric purity. J Chromatogr A. 2004;1042(1):173-80. https://doi.org/10.1016/j.chroma.2004.05.035
Barnhart WW, Gahm KH, Thomas S, Notari S, Semin D, Cheetham J. Supercritical fluid chromatography tandem-column method development in pharmaceutical sciences for a mixture of four stereoisomers. J Sep Sci. 2005;28(7):619-26. https://doi.org/10.1002/jssc.200500005
Chankvetadze B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. TrAC. Trends Anal Chem. 2020;122:115709. https://doi.org/10.1016/j.trac.2019.115709
Larkins WC, Olesik SV. Importance of molecular shape in supercritical-fluid chromatography using a porous glassy-carbon adsorbent stationary-phase. J Microcolumn Sep. 1993;5(6):543-50. https://doi.org/10.1002/mcs.1220050609
Knox JH, Ross P. Carbon-based packing materials for liquid chromatography: structure, performance, and retention mechanisms. Adv Chromatogr. 1997;37:73-119.
Kaul N, Agrawal H, Paradkar AR, Mahadik KR. Effect of system variables involved in packed column supercritical fluid chromatography of stavudine taken as model analyte using response surface methodology along with study of thermodynamic parameters. J Pharm Biomed Anal. 2007;43(2):471-80. https://doi.org/10.1016/j.jpba.2006.07.038
Gyllenhaal O, Karlsson A. Packed-column supercritical fluid chromatography for the analysis of isosorbide-5-mononitrate and related a compounds in bulk substance and tablets. J Biochem Biophys Methods. 2000;43(1-3):135-46. https://doi.org/10.1016/s0165-022x(00)00087-7
West C, Lesellier E. Separation of substituted aromatic isomers with porous graphitic carbon in subcritical fluid chromatography. J Chromatogr A. 2005;1099(1-2):175-84. https://doi.org/10.1016/j.chroma.2005.09.002
Gyllenhaal O, Karlsson A. Evaluation conditions for SFC of metoprolol and related amino alcohols on hypercarb (porous graphitic carbon) with respect to structure-selectivity relations. Chromatographia. 2010;71(1-2):7-13. https://doi.org/10.1365/s10337-009-1406-3
Vaccher C, Decaudin B, Sautou V, Lecoeur M. Analysis of non-phthalates plasticizers on porous graphitic carbon by supercritical fluid chromatography using evaporative light scattering detection. J Chromatogr A. 2014;1359:277-86. https://doi.org/10.1016/j.chroma.2014.07.036
Lecoeur M, Decaudin B, Guillotin Y, Sautou V, Vaccher C, Grp AS. Comparison of high-performance liquid chromatography and supercritical fluid chromatography using evaporative light scattering detection for the determination of plasticizers in medical devices. J Chromatogr A. 2015;1417:104-15. https://doi.org/10.1016/j.chroma.2015.09.026
Bernard L, Bourdeaux D, Pereira B, Azaroual N, Barthelemy C, Breysse C, et al. Analysis of plasticizers in Pvc medical devices: performance comparison of eight analytical methods. Talanta 2017;162:604-11. https://doi.org/10.1016/j.talanta.2016.10.033
Nothias LF, Boutet-Mercey S, Cachet X, De La Torre E, Laboureur L, Gallard JF, et al. Environmentally friendly procedure based on supercritical fluid chromatography and tandem mass spectrometry molecular networking for the discovery of potent antiviral compounds from euphorbia semiperfoliata. J Nat Prod. 2017;80(10):2620-9. https://doi.org/10.1021/acs.jnatprod.7b00113
Santerre C, Vallet N, Touboul D. Fingerprints of flower absolutes using supercritical fluid chromatography hyphenated with high resolution mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1092:1-6. https://doi.org/10.1016/j.jchromb.2018.05.016
Schmidtsdorff S, Neumann J, Schmidt AH, Parr MK. Analytical lifecycle management for comprehensive and universal nitrosamine analysis in various pharmaceutical formulations by supercritical fluid chromatography. J Pharm Biomed Anal. 2021;197:113960. https://doi.org/10.1016/j.jpba.2021.113960
Schmidtsdorff S, Neumann J, Schmidt AH, Parr MK. Risk assessment for nitrosated pharmaceuticals: a future perspective in drug development. Arch Pharm. 2022;355:4. https://doi.org/10.1002/ardp.202100435
Santerre C, Delannay E, Franco P, Vallet N, Touboul D. Comparison of supercritical fluid chromatography hyphenated to an ultraviolet detector and gas chromatography hyphenated to a flame ionization detector for qualitative and quantitative analysis of citrus essential oils. Separations 2022;9:7. https://doi.org/10.3390/separations9070183
Gyllenhaal O, Karlsson A. Enantioresolution of dihydropyridine substituted acid by supercritical fluid chromatography on hypercarb (R) with Z-(L)-arginine as chiral counter ion. Chromatographia. 2000;52(5-6):351-5. https://doi.org/10.1007/bf02491030
Gyllenhaal O, Karlsson A. Enantiomeric separations of amino alcohols by packed-column SFC on hypercarb with L-(+)-tartaric acid as chiral selector. J Biochem Biophys Methods. 2002;54(1-3):169-85. https://doi.org/10.1016/s0165-022x(02)00139-2
Salvador A, Herbreteau B, Dreux M. Preliminary studies of supercritical-fluid chromatography on porous graphitic carbon with methylated cyclodextrin as chiral selector. Chromatographia 2001;53(3-4):207-9. [Online]. Available: <Go to ISI>://WOS:000167244300017.
Salvador A, Herbreteau B, Dreux M, Karlsson A, Gyllenhaal O. Chiral supercritical fluid chromatography on porous graphitic carbon using commercial dimethyl beta-cyclodextrins as mobile phase additive. J Chromatogr A. 2001;929(1-2):101-12. https://doi.org/10.1016/s0021-9673(01)01155-4
Lavison G, Bertoncini F, Thiebaut D, Beziau JF, Carraze B, Valette P, et al. Supercritical fluid chromatography and two-dimensional supercritical fluid chromatography of polar car lubricant additives with neat Co2 as mobile phase. J Chromatogr A. 2007;1161(1-2):300-7. https://doi.org/10.1016/j.chroma.2007.05.068
Paproski RE, Cooley J, Lucy CA. Comparison of titania, zirconia, and silica stationary phases for separating diesel fuels according to hydrocarbon group-type by supercritical fluid chromatography. J Chromatogr A. 2005;1095(1-2):156-63. https://doi.org/10.1016/j.chroma.2005.07.124
Paproski RE, Cooley J, Lucy CA. Fast supercritical fluid chromatography hydrocarbon group-type separations of diesel fuels using packed and monolithic columns. Analyst 2006;131(3):422-8. https://doi.org/10.1039/b515274g
Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of skeleton size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J Chromatogr A. 1997;762(1-2):135-46. https://doi.org/10.1016/s0021-9673(96)00944-2
Zajickova Z, Rubi E, Svec F. In situ Sol-Gel preparation of porous alumina monoliths for chromatographic separations of adenosine phosphates. J Chromatogr A. 2011;1218(22):3555-8. https://doi.org/10.1016/j.chroma.2011.03.054
Lesellier E, West C, Tchapla A. Advantages of the use of monolithic stationary phases for modelling the retention in sub/supercritical chromatography application to cis/trans-beta-carotene separation. J Chromatogr A. 2003;1018(2):225-32. https://doi.org/10.1016/j.chroma.2003.07.014
Lee JW, Uchikata T, Matsubara A, Nakamura T, Fukusaki E, Bamba T. Application of supercritical fluid chromatography/mass spectrometry to lipid profiling of soybean. J Biosci Bioeng. 2012;113(2):262-8. https://doi.org/10.1016/j.jbiosc.2011.10.009
Matsubara A, Bamba T, Ishida H, Fukusaki E, Hirata K. Highly sensitive and accurate profiling of carotenoids by supercritical fluid chromatography coupled with mass spectrometry. J Sep Sci. 2009;32(9):1459-64. https://doi.org/10.1002/jssc.200800699
Huang Y, Jiang ZJ. Supercritical fluid chromatography using methacrylate-based monolithic column for the separation of polar analytes. J Sep Sci. 2021;44(17):3324-32. https://doi.org/10.1002/jssc.202100256
Bamba T, Fukusaki E. Separation of hydrophobic metabolites using monolithic silica column in high-performance liquid chromatography and supercritical fluid chromatography. J Sep Sci. 2009;32(15-16):2699-706. https://doi.org/10.1002/jssc.200900124
Novell A, Méndez A, Minguillón C. Effects of supercritical fluid chromatography conditions on enantioselectivity and performance of polyproline-derived chiral stationary phases. J Chromatogr A. 2015;1403:138-43. https://doi.org/10.1016/j.chroma.2015.05.026
Hellgeth JW, Jordan JW, Taylor LT, Khorassani MS. Supercritical fluid chromatography of free fatty-acids with online ftir detection. J Chromatogr Sci. 1986;24(5):183-8. https://doi.org/10.1093/chromsci/24.5.183
Morin P, Caude M, Rosset R. Super- and subcritical fluid chromatography-fourier transform infrared spectrometry of medium polar compounds on polymeric styrene-divinylbenzene packe. J Chromatogr A. 1987;407:87-108. https://doi.org/10.1016/S0021-9673(01)92607-X
Smith RM, Sanagi MM. Supercritical fluid chromatography of barbiturates. J Chromatogr. 1989;481:63-9. https://doi.org/10.1016/s0021-9673(01)96753-6
Thurbide KB, Zhang J. Separation of linear gramicidins using carbon dioxide-containing mobile phases. Anal Bioanal Chem. 2005;382(5):1227-33. https://doi.org/10.1007/s00216-005-3270-9
Zhang J, Thurbide KB. Analysis of Ca2+ binding with gramicidin double helices using subcritical fluid chromatography. J Chromatogr A. 2007;1171(1):104-11. https://doi.org/10.1016/j.chroma.2007.09.056
Blackwell JA, Stringham RW. Effect of mobile phase components on the separation of polypeptides using carbon dioxide-based mobile phases. HRC J High Resolut Chromatogr. 1999;22(2):74-8. [Online]. Available: <Go to ISI>://WOS:000078454200002.
McAvoy Y, Cole MD, Gueniat O. Analysis of amphetamines by supercritical fluid chromatography, high-performance liquid chromatography, gas chromatography and capillary zone electrophoresis; a preliminary comparison. Forensic Sci Int. 1999;102(1):13-22. https://doi.org/10.1016/s0379-0738(99)00041-9
Fujito Y, Hayakawa Y, Bamba T. Development of a novel comprehensive analytical method for volatile compounds using supercritical fluid chromatography/mass spectrometry with a highly cross-linked styrene divinylbenzene polymer-based column. J Chromatogr A. 2020;1626:461363. https://doi.org/10.1016/j.chroma.2020.461363
Tsyurupa MP, Blinnikova ZK, Il'in MM, Davankov VA, Parenago OO, Pokrovskii OI, et al. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography. Russ J Phys Chem A. 2015;89(11):2064-71. https://doi.org/10.1134/s0036024415110217
Raynor MW, Bartle KD, Clifford AA, Chalmers JM, Katase T, Rouse CA, et al. Analysis of aliphatic and phenolic carboxylic-acids by capillary supercritical fluid chromatography fourier-transform infrared microspectrometry. J Chromatogr. 1990;505(1):179-90. https://doi.org/10.1016/s0021-9673(01)93077-8
Wicker AP, Carlton DD, Tanaka K, Nishimura M, Chen V, Ogura T, et al. On-line supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons in soil. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1086:82-8. https://doi.org/10.1016/j.jchromb.2018.04.014
Doue M, Bichon E, Dervilly-Pinel G, Pichon V, Chapuis-Hugon F, Lesellier E, et al. Molecularly imprinted polymer applied to the selective isolation of urinary steroid hormones: an efficient tool in the control of natural steroid hormones abuse in cattle. J Chromatogr A. 2012;1270:51-61. https://doi.org/10.1016/j.chroma.2012.10.067
Herbreteau B, Salvador A, Lafosse M, Dreux M. SFC with evaporative light-scattering sfc detection and atmospheric-pressure chemical-ionisation mass spectrometry for methylated glucoses and cyclodextrins analysis. Analysis 1999;27(8):706-12. https://doi.org/10.1051/analusis:1999270706
Salvador A, Herbreteau B, Dreux M. Electrospray mass spectrometry and supercritical fluid chromatography of methylated beta-cyclodextrins. J Chromatogr A. 1999;855(2):645-56. https://doi.org/10.1016/s0021-9673(99)00718-9
Nagai K, Shibata T, Shinkura S, Ohnishi A. Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions. J Chromatogr A. 2018;1549:85-92. https://doi.org/10.1016/j.chroma.2018.03.032
Nagai K, Shibata T, Shinkura S, Ohnishi A. Poly(4-vinylpyridine) based novel stationary phase investigated under supercritical fluid chromatography conditions. J Chromatogr A. 2018;1572:119-27. https://doi.org/10.1016/j.chroma.2018.08.038
Pandya PA, Shah PA, Shrivastav PS. Facile separation of four co-formulated ternary antihypertensive drug combinations with a customized elution protocol using supercritical fluid chromatography. Microchem J. 2020;159:105594. https://doi.org/10.1016/j.microc.2020.105594
Pandya PA, Shah PA, Shrivastav PS. Application of supercritical fluid chromatography for separation and quantitation of 15 co-formulated binary anti-hypertensive medications using a single elution protocol. Biomed Chromatogr. 2021;35:4. https://doi.org/10.1002/bmc.5035
Suarez-Iglesias O, Medina I, Pizarro C, Bueno JL. Diffusion of benzyl acetate, 2-phenylethyl acetate, 3-phenylpropyl acetate, and dibenzyl ether in mixtures of carbon dioxide and ethanol. Ind Eng Chem Res. 2007;46(11):3810-9. https://doi.org/10.1021/ie061591q
Vanwasen U, Schneider GM. Pressure and density dependence of capacity ratios in Supercritical Fluid Chromatography (SFC) with carbon-dioxide as mobile phase. Chromatographia 1975;8(6):274-6. https://doi.org/10.1007/bf02270936
Skerget M, Knez Z. Supercritical fluid adsorption and desorption of lipids on various adsorbents. Acta Chim Slov. 2007;54(4):688-92. [Online]. Available: <Go to ISI>://WOS:000252091300003.
Planeta J, Karasek P, Roth M. Solute partitioning between 1-N-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid and supercritical CO2. J Chem Eng Data. 2012;57(4):1064-71. https://doi.org/10.1021/je200986x
Smuts J, Wanigasekara E, Armstrong DW. Comparison of stationary phases for packed column supercritical fluid chromatography based upon ionic liquid motifs: a study of cation and anion effects. Anal Bioanal Chem. 2011;400(2):435-47. https://doi.org/10.1007/s00216-011-4767-z
Chou FM, Wang WT, Wei GT. Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase. J Chromatogr A. 2009;1216(16):3594-99. https://doi.org/10.1016/j.chroma.2009.02.057
Zheng J, Taylor LT, Pinkston JD. Elution of cationic species with/without ion pair reagents from polar stationary phases via SFC. Chromatographia 2006;63(5-6):267-76. https://doi.org/10.1365/s10337-006-0731-z
Demirbuker M, Hagglund I, Blomberg LG. Separation of unsaturated fatty-acid methyl-esters by packed capillary supercritical fluid chromatography-comparison of different column packings. J Chromatogr. 1992;605(2):263-7. https://doi.org/10.1016/0021-9673(92)85245-o
Blomberg LG, Demirbuker M, Andersson PE. Argentation supercritical-fluid chromatography for quantitative-analysis of triacylglycerols. J Am Oil Chem Soc. 1993;70(10):939-46. https://doi.org/10.1007/bf02543018
Demirbuker M, Blomberg LG, Olsson NU, Bergqvist M, Herslof BG, Jacobs FA. Characterization of triacylglycerols in the seeds of aquilegia-vulgaris by chromatographic and mass-spectrometric methods. Lipids 1992;27(6):436-41. https://doi.org/10.1007/bf02536385
Francois I, Pereira AD, Sandra P. Considerations on comprehensive and off-line supercritical fluid chromatography X reversed-phase liquid chromatography for the analysis of triacylglycerols in fish oil. J Sep Sci. 2010;33(10):1504-12. https://doi.org/10.1002/jssc.201000044
Sandra P, Medvedovici A, Zhao Y, David F. Characterization of triglycerides in vegetable oils by silver-ion packed-column supercritical fluid chromatography coupled to mass spectroscopy with atmospheric pressure chemical ionization and coordination ion spray. J Chromatogr A. 2002;974(1-2):231-41. https://doi.org/10.1016/s0021-9673(02)01311-0
Garcia-Cicourel AR, van de Velde B, Roskam G, Janssen HG. Supercritical fluid chromatography as a rapid single-step method for the determination of mineral oil saturated and aromatic hydrocarbons in purified mineral oils for food and cosmetics applications. J Chromatogr A. 2020;1614:460713. https://doi.org/10.1016/j.chroma.2019.460713
Demirbüker M, Blomberg LG. Separation of triacylglycerols by supercritical-fluid argentation chromatography. J Chromatogr A. 1991;550:765-74. https://doi.org/10.1016/S0021-9673(01)88580-0
Xhaferaj M, Naegele E, Parr MK. Ion exchange in supercritical fluid chromatography tandem mass spectrometry (SFC-Ms/Ms): application for polar and ionic drugs and metabolites in forensic and anti-doping analysis. J Chromatogr A. 2020;1614:460726. https://doi.org/10.1016/j.chroma.2019.460726
Berger TA, Deye JF. Separation of hydroxybenzoic acids by packed-column supercritical fluid chromatography using modified fluids with very polar additives. J Chromatogr Sci. 1991;29(1):26-30. https://doi.org/10.1093/chromsci/29.1.26
Beres MJ, Olesik SV. Enhanced-fluidity liquid chromatography using mixed-mode hydrophilic interaction liquid chromatography/strong cation-exchange retention mechanisms. J Sep Sci. 2015;38(18):3119-29. https://doi.org/10.1002/jssc.201500454
Fogwill MO, Thurbide KB. Chromatography using a water stationary phase and a carbon dioxide mobile phase. Anal Chem. 2010;82(24):10060-7. https://doi.org/10.1021/ac1018793
Murakami JN, Thurbide KB. Coating properties of a novel water stationary phase in capillary supercritical fluid chromatography. J Sep Sci. 2015;38(9):1618-24. https://doi.org/10.1002/jssc.201401445
Murakami JN, Thurbide KB. Packed column supercritical fluid chromatography using stainless steel particles and water as a stationary phase. Anal Chem. 2015;87(18):9429-35. https://doi.org/10.1021/acs.analchem.5b02399
Scott AF, Thurbide KB. Retention characteristics of a Ph tunable water stationary phase in supercritical fluid chromatography. J Chromatogr Sci. 2017;55(1):82-9. https://doi.org/10.1093/chromsci/bmw153
Scott AF, Thurbide KB. Retention characteristics of a Ph tunable water stationary phase in supercritical fluid chromatography. J Chromatogr Sci. 2016;55(1):82-9. https://doi.org/10.1093/chromsci/bmw153
Nai EA, Thurbide KB. Supercritical fluid chromatography of organic bases using a modified water stationary phase. Chromatographia 2022;85(12):1087-96. https://doi.org/10.1007/s10337-022-04208-1
Kelker H. Verhalten einer optisch anisotropen schmelze Als stationäre phase in der gas-flüssigkeits-verteilungschromatographie. Ber Bunsenges Phys Chem. 1963;67(7):698-703. https://doi.org/10.1002/bbpc.19630670714
Grajek H, Witkiewicz Z, Purchała M, Drzewiński W. Liquid crystals as stationary phases in chromatography. Chromatographia 2016;79(19):1217-45. https://doi.org/10.1007/s10337-016-3154-5
Chang HCK, Markides KE, Bradshaw JS, Lee ML. Selectivity enhancement for petroleum-hydrocarbons using a smectic liquid-crystalline stationary phase in supercritical fluid chromatography. J Chromatogr Sci. 1988;26(6):280-9. https://doi.org/10.1093/chromsci/26.6.280
Rokushika S, Naikwadi KP, Jadhav AL, Hatano H. Liquid-crystal stationary phases for gas-chromatography and supercritical fluid chromatography. HRC CC J High Resolut Chromatogr Chromatogr Commun. 1985;8(8):480-4. https://doi.org/10.1002/jhrc.1240080825
Sewram V, Nair JJ, Mulholland DA, Raynor MW. Open-tubular supercritical-fluid chromatography of triterpene acids from dysoxylum-pettigrewianum (meliaceae). HRC J High Resolut Chromatogr. 1995;18(6):363-6. [Online]. Available: <Go to ISI>://WOS:A1995RJ31600007.
Finkelmann H. Synthesis structure and properties of liquid crystalline side-chain polymers. New York, NY: Academic Press; 1982.
Shen Y, Bradshaw JS, Lee ML. Packed capillary column supercritical fluid chromatography of fat-soluble vitamins using liquid crystal polysiloxane coated particles. Chromatographia 1996;43(1-2):53-8. https://doi.org/10.1007/bf02272821
Terrien I, Achard MF, Félix G, Hardouin F. Thermotropic laterally attached liquid crystalline polymers: I. new stationary phases for high-performance liquid chromatography. J Chromatogr A. 1998;810(1):19-31. https://doi.org/10.1016/S0021-9673(98)00198-8
Gritti F, Felix G, Achard MF, Hardouin F. Retention behavior of polycyclic aromatic hydrocarbons in supercritical fluid chromatography on a chemically bonded stationary phases based upon liquid-crystalline polymer. Chromatographia 2001;53(3-4):201-6. [Online]. Available: <Go to ISI>://WOS:000167244300016.