Artificial Neural Networks: An Innovative Approach Used for Elucidation of Ionization Processes in Supercritical Fluid Chromatography-Mass Spectrometry
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40347148
PubMed Central
PMC12096348
DOI
10.1021/acs.analchem.5c00152
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Understanding and predicting mass spectrometry responses in supercritical fluid chromatography-mass spectrometry (SFC-MS) is critical for optimizing detection across diverse analytes and solvent compositions. We present a novel approach using artificial neural networks (ANN) to explore the complex relationships between molecular descriptors of analytes and MS responses in different makeup solvent compositions enabling SFC-MS coupling. 226 molecular descriptors were evaluated for compounds under standardized SFC conditions, with 24 makeup solvent compositions. These makeup solvents included pure alcohols and methanol with varying concentrations of volatile additives. Our results highlight distinct ionization processes for the two most commonly used soft ionization techniques: (i) electrospray ionization (ESI), primarily involving proton or cation transfer, and (ii) atmospheric pressure chemical ionization (APCI), associated with charged ion transfer. Principal component analysis of weights assigned to molecular descriptors reveals that, in positive detection mode, these descriptors effectively differentiate ionization efficiency between ESI and APCI. In contrast, this differentiation is less pronounced in negative mode, where the variance explained is more homogeneously distributed, with stronger discrimination observed when NH3 is used as an additive to the organic modifier. These findings provide critical insights into the influence of molecular descriptors and solvent composition on ionization efficiency, serving as a foundation for future investigations into SFC-MS optimization. This proof-of-concept underscores the feasibility of using predictive models to advance understanding of ionization efficiency and offers a valuable framework for refining SFC-MS workflows in analytical chemistry.
Zobrazit více v PubMed
Wagen C. C., McMinn S. E., Kwan E. E., Jacobsen E. N.. Screening for generality in asymmetric catalysis. Nature. 2022;610(7933):680–686. doi: 10.1038/s41586-022-05263-2. PubMed DOI PMC
Plachká K., Pilařová V., Horáček O., Gazárková T., Vlčková H. K., Kučera R., Nováková L.. Columns in analytical-scale supercritical fluid chromatography: From traditional to unconventional chemistries. J. Sep. Sci. 2023;46(18):2300431. doi: 10.1002/jssc.202300431. PubMed DOI
Si-Hung L., Bamba T.. Current state and future perspectives of supercritical fluid chromatography. TrAC Trends Anal. Chem. 2022;149:116550. doi: 10.1016/j.trac.2022.116550. DOI
West C.. Supercritical fluid chromatography is not (only) nrmal-phase chromatography. J. Chromatogr. A. 2024;1713:464546. doi: 10.1016/j.chroma.2023.464546. PubMed DOI
Fekete S., Schappler J., Veuthey J.-L., Guillarme D.. Current and future trends in UHPLC. TrAC Trends Anal. Chem. 2014;63:2–13. doi: 10.1016/j.trac.2014.08.007. DOI
Gazárková T., Plachká K., Svec F., Nováková L.. Current state of supercritical fluid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 2022;149:116544. doi: 10.1016/j.trac.2022.116544. PubMed DOI
Thomas S. N., French D., Jannetto P. J., Rappold B. A., Clarke W. A.. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. Nat. Rev. Methods Primers. 2022;2(1):96. doi: 10.1038/s43586-022-00175-x. PubMed DOI PMC
Thite M. A., Boughtflower R., Caldwell J., Hitzel L., Holyoak C., Lane S. J., Oakley P., Pullen F. S., Richardson S., Langley G. J.. Ionisation in the absence of high voltage using supercritical fluid chromatography: a possible route to increased signal. Rapid Communications in Mass Spectrometry. 2008;22(22):3673–3682. doi: 10.1002/rcm.3784. PubMed DOI
West C., Melin J., Ansouri H., Mengue Metogo M.. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase. J. Chromatogr. A. 2017;1492:136–143. doi: 10.1016/j.chroma.2017.02.066. PubMed DOI
Fujito Y., Izumi Y., Nakatani K., Takahashi M., Hayakawa Y., Takayama M., Bamba T.. Understanding the mechanism of CO2-Assisted electrospray ionization for parameter optimization in supercritical fluid chromatography mass spectrometry. Anal. Chim. Acta. 2023;1246:340863. doi: 10.1016/j.aca.2023.340863. PubMed DOI
Ovchinnikov D., Ul’yanovskii N., Falev D. I., Kosyakov D.. Supercritical Fluid Chromatography–Mass-Spectrometry of Nitrogen-Containing Compounds: Atmospheric Pressure Ionization. J. Anal. Chem. 2021;76:1624–1634. doi: 10.1134/S1061934821140070. DOI
Ovchinnikov D., Vakhrameev S., Semushina M., Ul’yanovskii N., Kosyakov D.. Supercritical Fluid Chromatography–Mass Spectrometry with Atmospheric Pressure Chemical Ionization: Negatively Charged Ions of Mobile Phase Components. J. Anal. Chem. 2023;78:1829–1838. doi: 10.1134/S1061934823130105. DOI
Guillarme D., Desfontaine V., Heinisch S., Veuthey J.-L.. What are the current solutions for interfacing supercritical fluid chromatography and mass spectrometry? J. Chromatogr. B. 2018;1083:160–170. doi: 10.1016/j.jchromb.2018.03.010. PubMed DOI
Losacco G. L., Veuthey J.-L., Guillarme D.. Supercritical fluid chromatography–Mass spectrometry: Recent evolution and current trends. TrAC Trends Anal. Chem. 2019;118:731–738. doi: 10.1016/j.trac.2019.07.005. DOI
Pilařová V., Plachká K., Khalikova M. A., Svec F., Nováková L.. Recent developments in supercritical fluid chromatography–mass spectrometry: Is it a viable option for analysis of complex samples? TrAC Trends Anal. Chem. 2019;112:212–225. doi: 10.1016/j.trac.2018.12.023. DOI
Desfontaine, V. ; Veuthey, J. L. ; Guillarme, D. . Chapter 8 - Hyphenated Detectors: Mass Spectrometry. In Supercritical Fluid Chromatography; Poole, C. F. , Ed.; Elsevier: 2017; pp 213–244.
Tarafder A.. Designs and methods for interfacing SFC with MS. J. Chromatogr. B. 2018;1091:1–13. doi: 10.1016/j.jchromb.2018.05.003. PubMed DOI
Duval J., Colas C., Pecher V., Poujol M., Tranchant J.-F., Lesellier E.. Hyphenation of ultra high performance supercritical fluid chromatography with atmospheric pressure chemical ionisation high resolution mass spectrometry: Part 1. Study of the coupling parameters for the analysis of natural non-polar compounds. J. Chromatogr. A. 2017;1509:132–140. doi: 10.1016/j.chroma.2017.06.016. PubMed DOI
Parr M. K., Wüst B., Teubel J., Joseph J. F.. Splitless hyphenation of SFC with MS by APCI, APPI, and ESI exemplified by steroids as model compounds. J. Chromatogr. B. 2018;1091:67–78. doi: 10.1016/j.jchromb.2018.05.017. PubMed DOI
Akbal L., Hopfgartner G.. Effects of liquid post-column addition in electrospray ionization performance in supercritical fluid chromatography–mass spectrometry. J. Chromatogr. A. 2017;1517:176–184. doi: 10.1016/j.chroma.2017.08.044. PubMed DOI
Fujito Y., Hayakawa Y., Izumi Y., Bamba T.. Importance of optimizing chromatographic conditions and mass spectrometric parameters for supercritical fluid chromatography/mass spectrometry. J. Chromatogr. A. 2017;1508:138–147. doi: 10.1016/j.chroma.2017.05.071. PubMed DOI
Akbal L., Hopfgartner G.. Hyphenation of packed column supercritical fluid chromatography with mass spectrometry: where are we and what are the remaining challenges? Anal. Bioanal. Chem. 2020;412(25):6667–6677. doi: 10.1007/s00216-020-02715-4. PubMed DOI
Plachká K., Gazárková T. á., Škop J., Guillarme D., Svec F., Nováková L.. Fast Optimization of Supercritical Fluid Chromatography–Mass Spectrometry Interfacing Using Prediction Equations. Anal. Chem. 2022;94(11):4841–4849. doi: 10.1021/acs.analchem.2c00154. PubMed DOI
Bieber S., Letzel T., Kruve A.. Electrospray Ionization Efficiency Predictions and Analytical Standard Free Quantification for SFC/ESI/HRMS. J. Am. Soc. Mass Spectrom. 2023;34(7):1511–1518. doi: 10.1021/jasms.3c00156. PubMed DOI PMC
Grand-Guillaume Perrenoud A., Hamman C., Goel M., Veuthey J.-L., Guillarme D., Fekete S.. Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments. J. Chromatogr. A. 2013;1314:288–297. doi: 10.1016/j.chroma.2013.09.039. PubMed DOI
Ouyang L.-B.. New Correlations for Predicting the Density and Viscosity of Supercritical Carbon Dioxide Under Conditions Expected in Carbon Capture and Sequestration Operations. Open Pet. Eng. J. 2011;5(4):13–21. doi: 10.2174/1874834101104010013. DOI
Sih R., Dehghani F., Foster N. R.. Viscosity measurements on gas expanded liquid systemsMethanol and carbon dioxide. J. Supercrit. Fluids. 2007;41(1):148–157. doi: 10.1016/j.supflu.2006.09.002. DOI
Lafossas C., Benoit-Marquié F., Garrigues J. C.. Analysis of the retention of tetracyclines on reversed-phase columns: Chemometrics, design of experiments and quantitative structure-property relationship (QSPR) study for interpretation and optimization. Talanta. 2019;198:550–559. doi: 10.1016/j.talanta.2019.02.051. PubMed DOI
Hall, L. H. ; Kier, L. B. . The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Modeling. In Reviews in Computational Chemistry, Reviews in Computational Chemistry, 1991; pp 367–422.
Petitjean M.. Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J. Chem. Inf. Comput. Sci. 1992;32(4):331–337. doi: 10.1021/ci00008a012. DOI
Bath P. A., Poirrette A. R., Willett P., Allen F. H.. The Extent of the Relationship between the Graph-Theoretical and the Geometrical Shape Coefficients of Chemical Compounds. J. Chem. Inf. Comput. Sci. 1995;35(4):714–716. doi: 10.1021/ci00026a007. DOI
Lipinski C. A., Lombardo F., Dominy B. W., Feeney P. J.. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23(1−3):3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI
Sharma V., Goswami R., Madan A. K.. Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure–Property and Structure–Activity Studies. J. Chem. Inf. Comput. Sci. 1997;37(2):273–282. doi: 10.1021/ci960049h. DOI
Todeschini R., Gramatica P.. The Whim Theory: New 3D Molecular Descriptors for Qsar in Environmental Modelling. SAR and QSAR in Environmental Research. 1997;7(1−4):89–115. doi: 10.1080/10629369708039126. PubMed DOI
Wang R., Fu Y., Lai L.. A New Atom-Additive Method for Calculating Partition Coefficients. J. Chem. Inf. Comput. Sci. 1997;37(3):615–621. doi: 10.1021/ci960169p. DOI
Ghose A. K., Viswanadhan V. N., Wendoloski J. J.. Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. J. Phys. Chem. A. 1998;102(21):3762–3772. doi: 10.1021/jp980230o. DOI
Todeschini, R. ; Gramatica, P. . New 3D Molecular Descriptors: The WHIM theory and QSAR Applications. In 3D QSAR in Drug Design: Ligand-Protein Interactions and Molecular Similarity; Kubinyi, H. , Folkers, G. , Martin, Y. C. , Eds.; Springer: Netherlands, 1998; pp 355–380.
Pearlman R. S., Smith K. M.. Metric Validation and the Receptor-Relevant Subspace Concept. J. Chem. Inf. Comput. Sci. 1999;39:28–35. doi: 10.1021/ci980137x. DOI
Wang R., Gao Y., Lai L.. Calculating partition coefficient by atom-additive method. Perspect. Drug Discov. Des. 2000;19(1):47–66. doi: 10.1023/A:1008763405023. DOI
Ghislain T., Faure P., Michels R.. Detection and Monitoring of PAH and Oxy-PAHs by High Resolution Mass Spectrometry: Comparison of ESI, APCI and APPI Source Detection. J. Am. Soc. Mass Spectrom. 2012;23(3):530–536. doi: 10.1007/s13361-011-0304-8. PubMed DOI
Trawiński J., Skibiński R., Komsta Ł.. Comparison of ESI and APCI sources in Q-TOF mass spectrometer in photodegradation study of selected psychotropic drugs. Acta Chromatogr. 2017;29(2):161–172. doi: 10.1556/1326.2017.29.2.2. DOI
Valadbeigi Y., Causon T.. Significance of Competitive Reactions in an Atmospheric Pressure Chemical Ionization Ion Source: Effect of Solvent. J. Am. Soc. Mass Spectrom. 2022;33(6):961–973. doi: 10.1021/jasms.2c00034. PubMed DOI PMC
Kloes G., Bennett T. J. D., Chapet-Batlle A., Behjatian A., Turberfield A. J., Krishnan M.. Far-Field Electrostatic Signatures of Macromolecular 3D Conformation. Nano Lett. 2022;22(19):7834–7840. doi: 10.1021/acs.nanolett.2c02485. PubMed DOI PMC