Investigating resistance to 5-Azacytidine and Venetoclax in PDX models of MDS/AML

. 2024 ; 14 () : 1414950. [epub] 20250107

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39839764

INTRODUCTION: Progressing myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) is an indication for hypomethylating therapy (HMA, 5-Azacytidine (AZA)) and a BCL2 inhibitor (Venetoclax, VEN) for intensive chemotherapy ineligible patients. Mouse models that engraft primary AML samples may further advance VEN + AZA resistance research. METHODS: We generated a set of transplantable murine PDX models from MDS/AML patients who developed resistance to VEN + AZA and compared the differences in hematopoiesis of the PDX models with primary bone marrow samples at the genetic level. PDX were created in NSGS mice via intraosseal injection of luciferase-encoding Lentivirus-infected MDS/AML primary cells from patient bone marrow. We validated the resistance of PDX-leukemia to VEN and AZA and further tested candidate agents that inhibit the growth of VEN/AZA-resistant AML. RESULTS AND DISCUSSION: Transplantable PDX models for MDS/AML arise with 31 % frequency. The lower frequency of transplantable PDX models is not related to peritransplant lethality of the graft, but rather to the loss of the ability of short-term proliferation of leukemic progenitors after 10 weeks of engraftment. There exist subtle genetic and cytological changes between primary and PDX-AML samples however, the PDX models retain therapy resistance observed in patients. Based on in vitro testing and in vivo validation in PDX models, Panobinostat and Dinaciclib are very promising candidate agents that overcome dual VEN + AZA resistance.

Zobrazit více v PubMed

Maiti A, Rausch CR, Cortes JE, Pemmaraju N, Daver NG, Ravandi F, et al. . Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens. Haematologica. (2021) 106:894–8. doi: 10.3324/haematol.2020.252569 PubMed DOI PMC

Carter JL, Su Y, Qiao X, Zhao J, Wang G, Howard M, et al. . Acquired resistance to venetoclax plus azacitidine in acute myeloid leukemia: In vitro models and mechanisms. Biochem Pharmacol. (2023) 216:115759. doi: 10.1016/j.bcp.2023.115759 PubMed DOI

Carter BZ, Mak PY, Tao W, Zhang Q, Ruvolo V, Kuruvilla VM, et al. . Maximal activation of apoptosis signaling by cotargeting antiapoptotic proteins in BH3 mimetic-resistant AML and AML stem cells. Mol Cancer Ther. (2022) 21:879–89. doi: 10.1158/1535-7163.MCT-21-0690 PubMed DOI PMC

Lin S, Larrue C, Scheidegger NK, Seong BKA, Dharia NV, Kuljanin M, et al. . An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML. Cancer Discovery. (2022) 12:432–49. doi: 10.1158/2159-8290.CD-20-1851 PubMed DOI PMC

Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M, et al. . AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia. (2010) 24:1785–8. doi: 10.1038/leu.2010.158 PubMed DOI PMC

Zeller C, Richter D, Jurinovic V, Valtierra-Gutierrez IA, Jayavelu AK, Mann M, et al. . Adverse stem cell clones within a single patient’s tumor predict clinical outcome in AML patients. J Hematol Oncol. (2022) 15:25. doi: 10.1186/s13045-022-01232-4 PubMed DOI PMC

Diaz de la Guardia R, Velasco-Hernandez T, Gutierrez-Aguera F, Roca-Ho H, Molina O, Nombela-Arrieta C, et al. . Engraftment characterization of risk-stratified AML in NSGS mice. Blood Adv. (2021) 5:4842–54. doi: 10.1182/bloodadvances.2020003958 PubMed DOI PMC

Zhou H, Qin D, Xie C, Zhou J, Jia S, Zhou Z, et al. . Combinations of HDAC inhibitor and PPAR agonist induce ferroptosis of leukemic stem cell-like cells in acute myeloid leukemia. Clin Cancer Res. (2024) 30(23):5430–44. doi: 10.1158/1078-0432.c.7565502 PubMed DOI

Zhou H, Jiang Y, Huang Y, Zhong M, Qin D, Xie C, et al. . Therapeutic inhibition of PPARalpha-HIF1alpha-PGK1 signaling targets leukemia stem and progenitor cells in acute myeloid leukemia. Cancer Lett. (2023) 554:215997. doi: 10.1016/j.canlet.2022.215997 PubMed DOI

Zhang Y, Wang P, Wang Y, Shen Y. Sitravatinib as a potent FLT3 inhibitor can overcome gilteritinib resistance in acute myeloid leukemia. biomark Res. (2023) 11:8. doi: 10.1186/s40364-022-00447-4 PubMed DOI PMC

Tan Y, Xin L, Wang Q, Xu R, Tong X, Chen G, et al. . FLT3-selective PROTAC: Enhanced safety and increased synergy with Venetoclax in FLT3-ITD mutated acute myeloid leukemia. Cancer Lett. (2024) 592:216933. doi: 10.1016/j.canlet.2024.216933 PubMed DOI

Yang T, Ke H, Liu J, An X, Xue J, Ning J, et al. . Narazaciclib, a novel multi-kinase inhibitor with potent activity against CSF1R, FLT3 and CDK6, shows strong anti-AML activity in defined preclinical models. Sci Rep. (2024) 14:9032. doi: 10.1038/s41598-024-59650-y PubMed DOI PMC

Wheeler EC, Martin BJE, Doyle WC, Neaher S, Conway CA, Pitton CN, et al. . Splicing modulators impair DNA damage response and induce killing of cohesin-mutant MDS and AML. Sci Transl Med. (2024) 16:eade2774. doi: 10.1126/scitranslmed.ade2774 PubMed DOI PMC

Coughlan AM, Harmon C, Whelan S, O’Brien EC, O’Reilly VP, Crotty P, et al. . Myeloid engraftment in humanized mice: impact of granulocyte-colony stimulating factor treatment and transgenic mouse strain. Stem Cells Dev. (2016) 25:530–41. doi: 10.1089/scd.2015.0289 PubMed DOI

Mu-Mosley H, Ostermann L, Muftuoglu M, Vaidya A, Bonifant CL, Velasquez MP, et al. . Transgenic expression of IL15 retains CD123-redirected T cells in a less differentiated state resulting in improved anti-AML activity in autologous AML PDX models. Front Immunol. (2022) 13:880108. doi: 10.3389/fimmu.2022.880108 PubMed DOI PMC

Kawashima N, Ishikawa Y, Kim JH, Ushijima Y, Akashi A, Yamaguchi Y, et al. . Comparison of clonal architecture between primary and immunodeficient mouse-engrafted acute myeloid leukemia cells. Nat Commun. (2022) 13:1624. doi: 10.1038/s41467-022-29304-6 PubMed DOI PMC

Mohanty V, Baran N, Huang Y, Ramage CL, Cooper LM, He S, et al. . Transcriptional and phenotypic heterogeneity underpinning venetoclax resistance in AML. bioRxiv. (2024). doi: 10.1101/2024.01.27.577579 DOI

Satta T, Li L, Chalasani SL, Hu X, Nkwocha J, Sharma K, et al. . Dual mTORC1/2 inhibition synergistically enhances AML cell death in combination with the BCL2 antagonist venetoclax. Clin Cancer Res. (2023) 29:1332–43. doi: 10.1158/1078-0432.CCR-22-2729 PubMed DOI PMC

Minarik L, Pimkova K, Kokavec J, Schaffartzikova A, Vellieux F, Kulvait V, et al. . Analysis of 5-azacytidine resistance models reveals a set of targetable pathways. Cells. (2022) 11(2) 223. doi: 10.3390/cells11020223 PubMed DOI PMC

Xie C, Zhou H, Qin D, Zheng H, Tang Y, Li W, et al. . Bcl-2 inhibition combined with PPARalpha activation synergistically targets leukemic stem cell-like cells in acute myeloid leukemia. Cell Death Dis. (2023) 14:573. doi: 10.1038/s41419-023-06075-6 PubMed DOI PMC

Post SM, Ma H, Malaney P, Zhang X, Aitken MJL, Mak PY, et al. . AXL/MERTK inhibitor ONO-7475 potently synergizes with venetoclax and overcomes venetoclax resistance to kill FLT3-ITD acute myeloid leukemia. Haematologica. (2022) 107:1311–22. doi: 10.3324/haematol.2021.278369 PubMed DOI PMC

Khateb A, Deshpande A, Feng Y, Finlay D, Lee JS, Lazar I, et al. . The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nat Commun. (2021) 12:5397. doi: 10.1038/s41467-021-25664-7 PubMed DOI PMC

Stevens AM, Terrell M, Rashid R, Fisher KE, Marcogliese AN, Gaikwad A, et al. . Addressing a Pre-Clinical Pipeline Gap: Development of the Pediatric Acute Myeloid Leukemia Patient-Derived Xenograft Program at Texas Children’s Hospital at Baylor College of Medicine. Biomedicines. (2024) 12(2):394. doi: 10.3390/biomedicines12020394 PubMed DOI PMC

Palam LR, Ramdas B, Pickerell K, Pasupuleti SK, Kanumuri R, Cesarano A, et al. . Loss of Dnmt3a impairs hematopoietic homeostasis and myeloid cell skewing via the PI3Kinase pathway. JCI Insight. (2023) 8(9):e163864. doi: 10.1172/jci.insight.163864 PubMed DOI PMC

Brown FC, Carmichael CL. Patient-derived xenograft models for leukemias. Methods Mol Biol. (2024) 2806:31–40. doi: 10.1007/978-1-0716-3858-3_4 PubMed DOI

Ramsey HE, Gorska AE, Smith BN, Monteith AJ, Fuller L, Arrate MP, et al. . TLR3 agonism augments CD47 inhibition in acute myeloid leukemia. Haematologica. (2024) 109(7):2111–21. doi: 10.3324/haematol.2023.283850 PubMed DOI PMC

Hassan N, Yi H, Malik B, Gaspard-Boulinc L, Samaraweera SE, Casolari DA, et al. . Loss of the stress sensor GADD45A promotes stem cell activity and ferroptosis resistance in LGR4/HOXA9-dependent AML. Blood. (2024) 144(1):84–98. doi: 10.1182/blood.2024024072 PubMed DOI PMC

Olesinski EA, Bhatia KS, Wang C, Pioso MS, Lin XX, Mamdouh AM, et al. . Acquired multidrug resistance in AML is caused by low apoptotic priming in relapsed myeloblasts. Blood Cancer Discovery. (2024) 5(3):180–201. doi: 10.1158/2643-3230.BCD-24-0001 PubMed DOI PMC

Atar D, Ruoff L, Mast AS, Krost S, Moustafa-Oglou M, Scheuermann S, et al. . Rational combinatorial targeting by adapter CAR-T-cells (AdCAR-T) prevents antigen escape in acute myeloid leukemia. Leukemia. (2024) 38(10):2183–95. doi: 10.1038/s41375-024-02351-2 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...