Analysis of 5-Azacytidine Resistance Models Reveals a Set of Targetable Pathways
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-03586S
Czech Science Foundation
NV19-08-00144, NU21-08-00312, CZ-DRO-VFN64165
Ministry of Health
GAUK 1672119, SVV260521, UNCE/MED/016, ProgresQ26
Charles University
PubMed
35053339
PubMed Central
PMC8774143
DOI
10.3390/cells11020223
PII: cells11020223
Knihovny.cz E-zdroje
- Klíčová slova
- Azacytidine, CDX mice, PI3K/AKT signaling, myelodysplastic syndrome, resistance,
- MeSH
- anotace sekvence MeSH
- azacytidin farmakologie MeSH
- biologické modely * MeSH
- chemorezistence * účinky léků genetika MeSH
- DNA nádorová genetika MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- myši SCID MeSH
- myši MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- signální transdukce účinky léků MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- azacytidin MeSH
- DNA nádorová MeSH
- protoonkogenní proteiny c-akt MeSH
The mechanisms by which myelodysplastic syndrome (MDS) cells resist the effects of hypomethylating agents (HMA) are currently the subject of intensive research. A better understanding of mechanisms by which the MDS cell becomes to tolerate HMA and progresses to acute myeloid leukemia (AML) requires the development of new cellular models. From MDS/AML cell lines we developed a model of 5-azacytidine (AZA) resistance whose stability was validated by a transplantation approach into immunocompromised mice. When investigating mRNA expression and DNA variants of the AZA resistant phenotype we observed deregulation of several cancer-related pathways including the phosphatidylinosito-3 kinase signaling. We have further shown that these pathways can be modulated by specific inhibitors that, while blocking the proliferation of AZA resistant cells, are unable to increase their sensitivity to AZA. Our data reveal a set of molecular mechanisms that can be targeted to expand therapeutic options during progression on AZA therapy.
BIOCEV 1st Medical Faculty Charles University 25250 Vestec Czech Republic
Clinic Haematology General Faculty Hospital 12808 Prague Czech Republic
Cytogenetics General Faculty Hospital 12808 Prague Czech Republic
Czech Centre for Phenogenomics Institute of Molecular Genetics 25250 Vestec Czech Republic
Pathophysiology 1st Medical Faculty Charles University 12853 Prague Czech Republic
Zobrazit více v PubMed
Fenaux P., Mufti G.J., Hellstrom-Lindberg E., Santini V., Finelli C., Giagounidis A., Schoch R., Gattermann N., Sanz G., List A., et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–232. doi: 10.1016/S1470-2045(09)70003-8. PubMed DOI PMC
Fenaux P., Mufti G.J., Hellstrom-Lindberg E., Santini V., Gattermann N., Germing U., Sanz G., List A.F., Gore S., Seymour J.F., et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol. 2010;28:562–569. doi: 10.1200/JCO.2009.23.8329. PubMed DOI
Ozbalak M., Cetiner M., Bekoz H., Atesoglu E.B., Ar C., Salihoglu A., Tuzuner N., Ferhanoglu B. Azacitidine has limited activity in ‘real life’ patients with MDS and AML: A single centre experience. Hematol. Oncol. 2012;30:76–81. doi: 10.1002/hon.986. PubMed DOI
Maurillo L., Venditti A., Spagnoli A., Gaidano G., Ferrero D., Oliva E., Lunghi M., D’Arco A.M., Levis A., Pastore D., et al. Azacitidine for the treatment of patients with acute myeloid leukemia: Report of 82 patients enrolled in an Italian Compassionate Program. Cancer. 2012;118:1014–1022. doi: 10.1002/cncr.26354. PubMed DOI
Pleyer L., Germing U., Sperr W.R., Linkesch W., Burgstaller S., Stauder R., Girschikofsky M., Schreder M., Pfeilstocker M., Lang A., et al. Azacitidine in CMML: Matched-pair analyses of daily-life patients reveal modest effects on clinical course and survival. Leuk. Res. 2014;38:475–483. doi: 10.1016/j.leukres.2014.01.006. PubMed DOI
Prebet T., Gore S.D., Esterni B., Gardin C., Itzykson R., Thepot S., Dreyfus F., Rauzy O.B., Recher C., Ades L., et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J. Clin. Oncol. 2011;29:3322–3327. doi: 10.1200/JCO.2011.35.8135. PubMed DOI PMC
Harel S., Cherait A., Berthon C., Willekens C., Park S., Rigal M., Brechignac S., Thepot S., Quesnel B., Gardin C., et al. Outcome of patients with high risk Myelodysplastic Syndrome (MDS) and advanced Chronic Myelomonocytic Leukemia (CMML) treated with decitabine after azacitidine failure. Leuk. Res. 2015;39:501–504. doi: 10.1016/j.leukres.2015.02.004. PubMed DOI
Nazha A., Sekeres M.A., Bejar R., Rauh M.J., Othus M., Komrokji R.S., Barnard J., Hilton C.B., Kerr C.M., Steensma D.P., et al. Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients with Myelodysplastic Syndromes Using Artificial Intelligence. JCO Precis. Oncol. 2019;3:1–11. doi: 10.1200/PO.19.00119. PubMed DOI PMC
Drusbosky L.M., Singh N.K., Hawkins K.E., Salan C., Turcotte M., Wise E.A., Meacham A., Vijay V., Anderson G.G., Kim C.C., et al. A genomics-informed computational biology platform prospectively predicts treatment responses in AML and MDS patients. Blood Adv. 2019;3:1837–1847. doi: 10.1182/bloodadvances.2018028316. PubMed DOI PMC
Leonhardt H., Page A.W., Weier H.U., Bestor T.H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992;71:865–873. doi: 10.1016/0092-8674(92)90561-P. PubMed DOI
Stomper J., Rotondo J.C., Greve G., Lubbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: Mechanisms of resistance and novel HMA-based therapies. Leukemia. 2021;35:1873–1889. doi: 10.1038/s41375-021-01218-0. PubMed DOI PMC
DiNardo C.D., Jonas B.A., Pullarkat V., Thirman M.J., Garcia J.S., Wei A.H., Konopleva M., Dohner H., Letai A., Fenaux P., et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020;383:617–629. doi: 10.1056/NEJMoa2012971. PubMed DOI
Garcia-Manero G., Fenaux P., Al-Kali A., Baer M.R., Sekeres M.A., Roboz G.J., Gaidano G., Scott B.L., Greenberg P., Platzbecker U., et al. Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): A randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17:496–508. doi: 10.1016/S1470-2045(16)00009-7. PubMed DOI
Sekeres M.A., Watts J., Radinoff A., Sangerman M.A., Cerrano M., Lopez P.F., Zeidner J.F., Campelo M.D., Graux C., Liesveld J., et al. Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 2021;35:2119–2124. doi: 10.1038/s41375-021-01125-4. PubMed DOI PMC
Janotka L., Messingerova L., Simonicova K., Kavcova H., Elefantova K., Sulova Z., Breier A. Changes in Apoptotic Pathways in MOLM-13 Cell Lines after Induction of Resistance to Hypomethylating Agents. Int. J. Mol. Sci. 2021;22:2076. doi: 10.3390/ijms22042076. PubMed DOI PMC
Medyouf H., Mossner M., Jann J.C., Nolte F., Raffel S., Herrmann C., Lier A., Eisen C., Nowak V., Zens B., et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14:824–837. doi: 10.1016/j.stem.2014.02.014. PubMed DOI
Ebinger S., Ozdemir E.Z., Ziegenhain C., Tiedt S., Castro Alves C., Grunert M., Dworzak M., Lutz C., Turati V.A., Enver T., et al. Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell. 2016;30:849–862. doi: 10.1016/j.ccell.2016.11.002. PubMed DOI PMC
Rabbani B., Tekin M., Mahdieh N. The promise of whole-exome sequencing in medical genetics. J. Hum. Genet. 2014;59:5–15. doi: 10.1038/jhg.2013.114. PubMed DOI
Curik N., Burda P., Vargova K., Pospisil V., Belickova M., Vlckova P., Savvulidi F., Necas E., Hajkova H., Haskovec C., et al. 5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia. 2012;26:1804–1811. doi: 10.1038/leu.2012.47. PubMed DOI
Mi H., Muruganujan A., Huang X., Ebert D., Mills C., Guo X., Thomas P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0) Nat. Protoc. 2019;14:703–721. doi: 10.1038/s41596-019-0128-8. PubMed DOI PMC
Sherman B.T., Da Huang W., Tan Q., Guo Y., Bour S., Liu D., Stephens R., Baseler M.W., Lane H.C., Lempicki R.A. DAVID Knowledgebase: A gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinform. 2007;8:426. doi: 10.1186/1471-2105-8-426. PubMed DOI PMC
Da Huang W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Traina F., Visconte V., Elson P., Tabarroki A., Jankowska A.M., Hasrouni E., Sugimoto Y., Szpurka H., Makishima H., O’Keefe C.L., et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28:78–87. doi: 10.1038/leu.2013.269. PubMed DOI
Polgarova K., Vargova K., Kulvait V., Dusilkova N., Minarik L., Zemanova Z., Pesta M., Jonasova A., Stopka T. Somatic mutation dynamics in MDS patients treated with azacitidine indicate clonal selection in patients-responders. Oncotarget. 2017;8:111966–111978. doi: 10.18632/oncotarget.22957. PubMed DOI PMC
Kim K., Park S., Choi H., Kim H.J., Kwon Y.R., Ryu D., Kim M., Kim T.M., Kim Y.J. Gene expression signatures associated with sensitivity to azacitidine in myelodysplastic syndromes. Sci. Rep. 2020;10:19555. doi: 10.1038/s41598-020-76510-7. PubMed DOI PMC
Pericole F.V., Lazarini M., de Paiva L.B., Duarte A., Vieira Ferro K.P., Niemann F.S., Roversi F.M., Olalla Saad S.T. BRD4 Inhibition Enhances Azacitidine Efficacy in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front. Oncol. 2019;9:16. doi: 10.3389/fonc.2019.00016. PubMed DOI PMC
Bertacchini J., Guida M., Accordi B., Mediani L., Martelli A.M., Barozzi P., Petricoin E., 3rd, Liotta L., Milani G., Giordan M., et al. Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia. 2014;28:2197–2205. doi: 10.1038/leu.2014.123. PubMed DOI
Bertacchini J., Frasson C., Chiarini F., D’Avella D., Accordi B., Anselmi L., Barozzi P., Forghieri F., Luppi M., Martelli A.M., et al. Dual inhibition of PI3K/mTOR signaling in chemoresistant AML primary cells. Adv. Biol. Regul. 2018;68:2–9. doi: 10.1016/j.jbior.2018.03.001. PubMed DOI
Darici S., Alkhaldi H., Horne G., Jorgensen H.G., Marmiroli S., Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J. Clin. Med. 2020;9:2934. doi: 10.3390/jcm9092934. PubMed DOI PMC
Nyakern M., Tazzari P.L., Finelli C., Bosi C., Follo M.Y., Grafone T., Piccaluga P.P., Martinelli G., Cocco L., Martelli A.M. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia. 2006;20:230–238. doi: 10.1038/sj.leu.2404057. PubMed DOI
Cao L., Xia X., Kong Y., Jia F., Yuan B., Li R., Li Q., Wang Y., Cui M., Dai Z., et al. Deregulation of tumor suppressive ASXL1-PTEN/AKT axis in myeloid malignancies. J. Mol. Cell Biol. 2020;12:688–699. doi: 10.1093/jmcb/mjaa011. PubMed DOI PMC
Steelman L.S., Franklin R.A., Abrams S.L., Chappell W., Kempf C.R., Basecke J., Stivala F., Donia M., Fagone P., Nicoletti F., et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25:1080–1094. doi: 10.1038/leu.2011.66. PubMed DOI
Bazarbachi A., Labopin M., Battipaglia G., Djabali A., Passweg J., Socie G., Forcade E., Blaise D., Chevallier P., Orvain C., et al. Sorafenib improves survival of FLT3-mutated acute myeloid leukemia in relapse after allogeneic stem cell transplantation: A report of the EBMT Acute Leukemia Working Party. Haematologica. 2019;104:e398–e401. doi: 10.3324/haematol.2018.211615. PubMed DOI PMC
Voisset E., Brenet F., Lopez S., de Sepulveda P. SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis. Cancers. 2020;12:1996. doi: 10.3390/cancers12071996. PubMed DOI PMC
Garcia-Manero G., Sekeres M.A., Egyed M., Breccia M., Graux C., Cavenagh J.D., Salman H., Illes A., Fenaux P., DeAngelo D.J., et al. A phase 1b/2b multicenter study of oral panobinostat plus azacitidine in adults with MDS, CMML or AML with 30% blasts. Leukemia. 2017;31:2799–2806. doi: 10.1038/leu.2017.159. PubMed DOI PMC
Zhang L., Cai T., Lin X., Huang X., Bui M.H., Plotnik J.P., Bellin R.J., Faivre E.J., Kuruvilla V.M., Lam L.T., et al. Selective Inhibition of the Second Bromodomain of BET Family Proteins Results in Robust Antitumor Activity in Preclinical Models of Acute Myeloid Leukemia. Mol. Cancer Ther. 2021;20:1809–1819. doi: 10.1158/1535-7163.MCT-21-0029. PubMed DOI
Shorstova T., Foulkes W.D., Witcher M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br. J. Cancer. 2021;124:1478–1490. doi: 10.1038/s41416-021-01321-0. PubMed DOI PMC