On-the-fly resolution enhancement in X-ray protein crystallography using electric field
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39841168
PubMed Central
PMC11880155
DOI
10.1007/s00249-025-01731-5
PII: 10.1007/s00249-025-01731-5
Knihovny.cz E-zdroje
- Klíčová slova
- External electric field, Macromolecular crystals, Resolution enhancement,
- MeSH
- elektřina * MeSH
- krystalografie rentgenová metody MeSH
- proteiny chemie MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny MeSH
X-ray crystallography has tremendously served structural biology by routinely providing high-resolution 3D structures of macromolecules. The extent of information encoded in the X-ray crystallography is proportional to which resolution the crystals diffract and the structure can be refined to. Therefore, there is a continuous effort to obtain high-quality crystals, especially for those proteins, which are considered difficult to crystallize into high-quality protein crystals of suitable sizes for X-ray crystallography. Efforts in enhancing the resolution in X-ray crystallography have also been made by optimizing crystallization protocols using external stimuli such as an electric field and magnetic field during the crystallization. Here, we present the feasibility of on-the-fly post-crystallization resolution enhancement of the protein crystal diffraction by applying a high-voltage electric field. The electric field between 2 and 11 kV/cm, which was applied after mounting the crystals in the beamline, resulted in the enhancement of the resolution. The crystal diffraction quality improved progressively with the exposure time. Moreover, we also find that upto defined electric field threshold, the protein structure remains largely unperturbed, a conclusion further supported by molecular dynamics simulations.
Zobrazit více v PubMed
Alexander LF, Radacsi N (2019) CrystEngComm 21:5014–5031
Ataka M, Wakayama NI (2002) Effects of a magnetic field and magnetization force on protein crystal growth. Why does a magnet improve the quality of some crystals? Acta Crystallogr D Biol Crystallogr 58(Pt 10 Pt 1):1708–1710 PubMed
Bergmann J, Davidson M, Oksanen E, Ryde U, Jayatilaka D (2020) fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins. IUCrJ 7(Pt 2):158–165 PubMed PMC
Burla MC, Carrozzini B, Caliandro R, Cascarano GL, De Caro L, Giacovazzo C, Polidori G (2003) Ab initio protein phasing at 1.4 A resolution: the new phasing approach of SIR2003-N. Acta Crystallogr A 59(Pt 6):560–568 PubMed
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101 PubMed
Dubach VRA, Guskov A (2020) The resolution in X-ray crystallography and single-particle cryogenic electron microscopy. Crystals 10:580
Duran D, Couster SL, Desjardins K, Delmotte A, Fox G, Meijers R, Moreno T, Savko M, Shepard W (2013) PROXIMA 2A–a new fully tunable micro-focus beamline for macromolecular crystallography. J Phys Conf Ser 425:012005
Elias M, Liebschner D, Koepke J, Lecomte C, Guillot B, Jelsch C, Chabriere E (2013) Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase. BMC Res Notes 2(6):308 PubMed PMC
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593
Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69(Pt 7):1204–1214 PubMed PMC
Flores-Hernández E, Stojanoff V, Arreguín-Espinosa R, Moreno A, Sánchez-Puig N (2013) An electrically assisted device for protein crystallization in a vapor-diffusion setup. J Appl Crystallogr 46:832–834 PubMed PMC
Frontana-Uribe BA, Moreno A (2008) On electrochemically assisted protein crystallization and related methods. Cryst Growth des 8:4194–4199 PubMed PMC
Guo YZ, Sun LH, Oberthuer D et al (2014) Utilisation of adsorption and desorption for simultaneously improving protein crystallisation success rate and crystal quality. Sci Rep 4:7308 PubMed PMC
Hammadi Z, Veesler S (2009) New approaches on crystallization under electric fields. Prog Biophys Mol Biol 101:38–44 PubMed
Hammadi Z, Astier JP, Morin R, Veesler S (2007) Protein crystallization induced by a localized voltage. Cryst Growth des 7:1472–1475
Hashizume Y, Inaka K, Furubayashi N, Kamo M, Takahashi S, Tanaka H (2020) Methods for obtaining better diffractive protein crystals: from sample evaluation to space crystallization. Crystals 10:78
Hekstra D, White K, Socolich M et al (2016) Electric-field-stimulated protein mechanics. Nature 540:400–405 PubMed PMC
Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61(Pt 9):1173–1180 PubMed
Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122 PubMed
Hess B et al (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447 PubMed
Hirano Y, Takeda K, Miki K (2016) Charge-density analysis of an iron–sulfur protein at an ultra-high resolution of 0.48 Å. Nature 534:281–284 PubMed
Kabsch W (2010) XDS. Acta Cryst D66:125–132 PubMed PMC
Karplus PA, Diederichs K (2015) Assessing and maximizing data quality in macromolecular crystallography. Curr Opin Struct Biol 34:60–68 PubMed PMC
Khakurel KP, Angelov B, Andreasson J (2019) Macromolecular Nanocrystal structural analysis with electron and X-rays: a comparative review. Molecules 24:3490 PubMed PMC
Khakurel KP, Nemergut M, Džupponová V, Kropielnicki K, Savko M, Žoldák G, Andreasson J (2024) Design and fabrication of 3D-printed in situ crystallization plates for probing microcrystals in an external electric field. J Appl Crystallogr 57(Pt 3):842–847 PubMed PMC
Koizumi H, Fujiwara K, Uda S (2009) Control of nucleation rate for tetragonal hen-egg white lysozyme crystals by application of an electric field with variable frequencies. Cryst Growth des 9:2420–2424
Koizumi H, Uda S, Fujiwara K, Tachibana M, Kojima K, Nozawa J (2013a) Improvement of crystal quality for tetragonal hen egg white lysozyme crystals under application of an external alternating current electric field. J Appl Crystallogr 46:25–29
Koizumi H, Uda S, Fujiwara K, Tachibana M, Kojima K, Nozawa J (2013b) Improvement of crystal quality for tetragonal hen egg white lysozyme crystals under application of an external alternating current electric field. J Appl Crystallogr 46(1):25–29
Koizumi H, Uda S, Fujiwara K, Tachibana M, Kojima K, Nozawa J (2015) Crystallization of high-quality protein crystals using an external electric field. J Appl Crystallogr 48(5):1507–1513
Koizumi H, Uda S, Tsukamoto K, Tachibana M, Kojima K, Okada J, Nozawa J (2017) Crystallization technique of high-quality protein crystals controlling surface free energy. Cryst Growth des 17(12):6712–6718
Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99(20):12562–12566 PubMed PMC
McPherson A, Cudney B (2014) Optimization of crystallization conditions for biological macromolecules. Acta Crystallogr F Struct Biol Commun 70(Pt 11):1445–1467 PubMed PMC
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67(Pt 4):355–367 PubMed PMC
Pareja-Rivera C, Cuéllar-Cruz M, Esturau-Escofet N, Demitri N, Polentarutti M, Stojanoff V, Moreno A (2017) Recent advances in the understanding of the influence of electric and magnetic fields on protein crystal growth. Cryst Growth des 17:135–145
Price DJ, Brooks CL III (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121(20):10096–10103 PubMed
Reva BA, Finkelstein AV, Skolnick J (1998) What is the probability of a chance prediction of a protein structure with an rmsd of 6 A? Fold des 3(2):141–147 PubMed
Rodríguez-Romero A, Esturau-Escofet N, Pareja-Rivera C, Moreno A (2017) Crystal growth of high-quality protein crystals under the presence of an alternant electric field in pulse-wave mode, and a strong magnetic field with radio frequency pulses characterized by X-ray diffraction. Crystals 7(6):179
Rubin E, Owen C, Stojanoff V (2017) Crystallization under an external electric field: a case study of glucose isomerase. Crystals 7:206
Ryu SY, Oh IH, Cho SJ, Kim SA, Song HK (2020) Enhancing protein crystallization under a magnetic field. Crystals 10:821
Saridakis E, Chayen NE (2000) Improving protein crystal quality by decoupling nucleation and growth in vapor diffusion. Protein Sci 9(4):755–757 PubMed PMC
Sazaki G, Moreno A, Nakajima K (2004) Novel coupling effects of the magnetic and electric fields on protein crystallization. J Cryst Growth 262:499–502
Smyth MS, Martin JH (2000) X-ray crystallography. Mol Pathol 53(1):8–14 PubMed PMC
Taleb M, Didierjean C, Jelsch C, Mangeot J, Capelle B, Aubry A (1999a) Crystallization of proteins under an external electric field. J Crystal Growth 200(3):575–582
Taleb M, Didierjean C, Jelsch C, Mangeot JP, Capelle B, Aubry A (1999b) Crystallization of proteins under an external electric field. J Cryst Growth 200:575–582
Taleb M, Didierjean C, Jelsch C, Mangeot JP, Aubry A (2001) Equilibrium kinetics of lysozyme crystallization under an external electric field. J Cryst Growth 232:250–255
Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66(Pt 1):22–25 PubMed
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690 PubMed PMC
Wakamatsu T, Ohnishi Y (2011) Transparent cell for protein crystallization under low applied voltage. Jpn J Appl Phys 50(4R):048003
Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275(1):1–21 PubMed PMC
Yuan Z, Wu M, Meng Y, Niu Y, Xiao W, Ruan X, He G, Jiang X (2022) Protein crystal regulation and harvest via electric field-based method. Curr Opin Chem Eng 36:100744