On-the-fly resolution enhancement in X-ray protein crystallography using electric field
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39841168
PubMed Central
PMC11880155
DOI
10.1007/s00249-025-01731-5
PII: 10.1007/s00249-025-01731-5
Knihovny.cz E-zdroje
- Klíčová slova
- External electric field, Macromolecular crystals, Resolution enhancement,
- MeSH
- elektřina * MeSH
- krystalografie rentgenová metody MeSH
- proteiny * chemie MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny * MeSH
X-ray crystallography has tremendously served structural biology by routinely providing high-resolution 3D structures of macromolecules. The extent of information encoded in the X-ray crystallography is proportional to which resolution the crystals diffract and the structure can be refined to. Therefore, there is a continuous effort to obtain high-quality crystals, especially for those proteins, which are considered difficult to crystallize into high-quality protein crystals of suitable sizes for X-ray crystallography. Efforts in enhancing the resolution in X-ray crystallography have also been made by optimizing crystallization protocols using external stimuli such as an electric field and magnetic field during the crystallization. Here, we present the feasibility of on-the-fly post-crystallization resolution enhancement of the protein crystal diffraction by applying a high-voltage electric field. The electric field between 2 and 11 kV/cm, which was applied after mounting the crystals in the beamline, resulted in the enhancement of the resolution. The crystal diffraction quality improved progressively with the exposure time. Moreover, we also find that upto defined electric field threshold, the protein structure remains largely unperturbed, a conclusion further supported by molecular dynamics simulations.
Zobrazit více v PubMed
Alexander LF, Radacsi N (2019) CrystEngComm 21:5014–5031 DOI
Ataka M, Wakayama NI (2002) Effects of a magnetic field and magnetization force on protein crystal growth. Why does a magnet improve the quality of some crystals? Acta Crystallogr D Biol Crystallogr 58(Pt 10 Pt 1):1708–1710 PubMed DOI
Bergmann J, Davidson M, Oksanen E, Ryde U, Jayatilaka D (2020) fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins. IUCrJ 7(Pt 2):158–165 PubMed DOI PMC
Burla MC, Carrozzini B, Caliandro R, Cascarano GL, De Caro L, Giacovazzo C, Polidori G (2003) Ab initio protein phasing at 1.4 A resolution: the new phasing approach of SIR2003-N. Acta Crystallogr A 59(Pt 6):560–568 PubMed DOI
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101 PubMed DOI
Dubach VRA, Guskov A (2020) The resolution in X-ray crystallography and single-particle cryogenic electron microscopy. Crystals 10:580 DOI
Duran D, Couster SL, Desjardins K, Delmotte A, Fox G, Meijers R, Moreno T, Savko M, Shepard W (2013) PROXIMA 2A–a new fully tunable micro-focus beamline for macromolecular crystallography. J Phys Conf Ser 425:012005 DOI
Elias M, Liebschner D, Koepke J, Lecomte C, Guillot B, Jelsch C, Chabriere E (2013) Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase. BMC Res Notes 2(6):308 PubMed DOI PMC
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593 DOI
Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69(Pt 7):1204–1214 PubMed DOI PMC
Flores-Hernández E, Stojanoff V, Arreguín-Espinosa R, Moreno A, Sánchez-Puig N (2013) An electrically assisted device for protein crystallization in a vapor-diffusion setup. J Appl Crystallogr 46:832–834 PubMed DOI PMC
Frontana-Uribe BA, Moreno A (2008) On electrochemically assisted protein crystallization and related methods. Cryst Growth des 8:4194–4199 PubMed DOI PMC
Guo YZ, Sun LH, Oberthuer D et al (2014) Utilisation of adsorption and desorption for simultaneously improving protein crystallisation success rate and crystal quality. Sci Rep 4:7308 PubMed DOI PMC
Hammadi Z, Veesler S (2009) New approaches on crystallization under electric fields. Prog Biophys Mol Biol 101:38–44 PubMed DOI
Hammadi Z, Astier JP, Morin R, Veesler S (2007) Protein crystallization induced by a localized voltage. Cryst Growth des 7:1472–1475 DOI
Hashizume Y, Inaka K, Furubayashi N, Kamo M, Takahashi S, Tanaka H (2020) Methods for obtaining better diffractive protein crystals: from sample evaluation to space crystallization. Crystals 10:78 DOI
Hekstra D, White K, Socolich M et al (2016) Electric-field-stimulated protein mechanics. Nature 540:400–405 PubMed DOI PMC
Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61(Pt 9):1173–1180 PubMed DOI
Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122 PubMed DOI
Hess B et al (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447 PubMed DOI
Hirano Y, Takeda K, Miki K (2016) Charge-density analysis of an iron–sulfur protein at an ultra-high resolution of 0.48 Å. Nature 534:281–284 PubMed DOI
Kabsch W (2010) XDS. Acta Cryst D66:125–132 PubMed PMC
Karplus PA, Diederichs K (2015) Assessing and maximizing data quality in macromolecular crystallography. Curr Opin Struct Biol 34:60–68 PubMed DOI PMC
Khakurel KP, Angelov B, Andreasson J (2019) Macromolecular Nanocrystal structural analysis with electron and X-rays: a comparative review. Molecules 24:3490 PubMed DOI PMC
Khakurel KP, Nemergut M, Džupponová V, Kropielnicki K, Savko M, Žoldák G, Andreasson J (2024) Design and fabrication of 3D-printed in situ crystallization plates for probing microcrystals in an external electric field. J Appl Crystallogr 57(Pt 3):842–847 PubMed DOI PMC
Koizumi H, Fujiwara K, Uda S (2009) Control of nucleation rate for tetragonal hen-egg white lysozyme crystals by application of an electric field with variable frequencies. Cryst Growth des 9:2420–2424 DOI
Koizumi H, Uda S, Fujiwara K, Tachibana M, Kojima K, Nozawa J (2013a) Improvement of crystal quality for tetragonal hen egg white lysozyme crystals under application of an external alternating current electric field. J Appl Crystallogr 46:25–29 DOI
Koizumi H, Uda S, Fujiwara K, Tachibana M, Kojima K, Nozawa J (2013b) Improvement of crystal quality for tetragonal hen egg white lysozyme crystals under application of an external alternating current electric field. J Appl Crystallogr 46(1):25–29 DOI
Koizumi H, Uda S, Fujiwara K, Tachibana M, Kojima K, Nozawa J (2015) Crystallization of high-quality protein crystals using an external electric field. J Appl Crystallogr 48(5):1507–1513 DOI
Koizumi H, Uda S, Tsukamoto K, Tachibana M, Kojima K, Okada J, Nozawa J (2017) Crystallization technique of high-quality protein crystals controlling surface free energy. Cryst Growth des 17(12):6712–6718 DOI
Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99(20):12562–12566 PubMed DOI PMC
McPherson A, Cudney B (2014) Optimization of crystallization conditions for biological macromolecules. Acta Crystallogr F Struct Biol Commun 70(Pt 11):1445–1467 PubMed DOI PMC
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67(Pt 4):355–367 PubMed DOI PMC
Pareja-Rivera C, Cuéllar-Cruz M, Esturau-Escofet N, Demitri N, Polentarutti M, Stojanoff V, Moreno A (2017) Recent advances in the understanding of the influence of electric and magnetic fields on protein crystal growth. Cryst Growth des 17:135–145 DOI
Price DJ, Brooks CL III (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121(20):10096–10103 PubMed DOI
Reva BA, Finkelstein AV, Skolnick J (1998) What is the probability of a chance prediction of a protein structure with an rmsd of 6 A? Fold des 3(2):141–147 PubMed DOI
Rodríguez-Romero A, Esturau-Escofet N, Pareja-Rivera C, Moreno A (2017) Crystal growth of high-quality protein crystals under the presence of an alternant electric field in pulse-wave mode, and a strong magnetic field with radio frequency pulses characterized by X-ray diffraction. Crystals 7(6):179 DOI
Rubin E, Owen C, Stojanoff V (2017) Crystallization under an external electric field: a case study of glucose isomerase. Crystals 7:206 DOI
Ryu SY, Oh IH, Cho SJ, Kim SA, Song HK (2020) Enhancing protein crystallization under a magnetic field. Crystals 10:821 DOI
Saridakis E, Chayen NE (2000) Improving protein crystal quality by decoupling nucleation and growth in vapor diffusion. Protein Sci 9(4):755–757 PubMed DOI PMC
Sazaki G, Moreno A, Nakajima K (2004) Novel coupling effects of the magnetic and electric fields on protein crystallization. J Cryst Growth 262:499–502 DOI
Smyth MS, Martin JH (2000) X-ray crystallography. Mol Pathol 53(1):8–14 PubMed DOI PMC
Taleb M, Didierjean C, Jelsch C, Mangeot J, Capelle B, Aubry A (1999a) Crystallization of proteins under an external electric field. J Crystal Growth 200(3):575–582 DOI
Taleb M, Didierjean C, Jelsch C, Mangeot JP, Capelle B, Aubry A (1999b) Crystallization of proteins under an external electric field. J Cryst Growth 200:575–582 DOI
Taleb M, Didierjean C, Jelsch C, Mangeot JP, Aubry A (2001) Equilibrium kinetics of lysozyme crystallization under an external electric field. J Cryst Growth 232:250–255 DOI
Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66(Pt 1):22–25 PubMed DOI
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690 PubMed DOI PMC
Wakamatsu T, Ohnishi Y (2011) Transparent cell for protein crystallization under low applied voltage. Jpn J Appl Phys 50(4R):048003 DOI
Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275(1):1–21 PubMed DOI PMC
Yuan Z, Wu M, Meng Y, Niu Y, Xiao W, Ruan X, He G, Jiang X (2022) Protein crystal regulation and harvest via electric field-based method. Curr Opin Chem Eng 36:100744 DOI