Design and fabrication of 3D-printed in situ crystallization plates for probing microcrystals in an external electric field
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38846773
PubMed Central
PMC11151662
DOI
10.1107/s1600576724002140
PII: S1600576724002140
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, crystallization plates, external electric fields, in situ X-ray crystallography, macromolecules,
- Publikační typ
- časopisecké články MeSH
X-ray crystallography is an established tool to probe the structure of macromolecules with atomic resolution. Compared with alternative techniques such as single-particle cryo-electron microscopy and micro-electron diffraction, X-ray crystallography is uniquely suited to room-temperature studies and for obtaining a detailed picture of macromolecules subjected to an external electric field (EEF). The impact of an EEF on proteins has been extensively explored through single-crystal X-ray crystallography, which works well with larger high-quality protein crystals. This article introduces a novel design for a 3D-printed in situ crystallization plate that serves a dual purpose: fostering crystal growth and allowing the concurrent examination of the effects of an EEF on crystals of varying sizes. The plate's compatibility with established X-ray crystallography techniques is evaluated.
Zobrazit více v PubMed
Dauter, Z. (2017). Methods Mol. Biol. 1607, 165–184. PubMed PMC
Doerr, A. (2016). Nat. Methods, 13, 23. PubMed
Evans, P. R. & Murshudov, G. N. (2013). Acta Cryst. D69, 1204–1214. PubMed PMC
Fried, S. D. & Boxer, S. G. (2017). Annu. Rev. Biochem. 86, 387–415. PubMed PMC
Han, M., Li, J., He, G., Lin, M., Xiao, W., Li, X., Wu, X. & Jiang, X. (2019). Lab Chip, 19, 767–777. PubMed
Harp, J. M., Coates, L., Sullivan, B. & Egli, M. (2018). Acta Cryst. F74, 603–609. PubMed PMC
Hekstra, D., White, K., Socolich, M., Henning, R. W., Šrajer, V. & Ranganathan, R. (2016). Nature, 540, 400–405. PubMed PMC
Hekstra, D. R. (2023). Annu. Rev. Biophys. 52, 255–274. PubMed PMC
Huang, C.-Y., Meier, N., Caffrey, M., Wang, M. & Olieric, V. (2020). J. Appl. Cryst. 53, 854–859. PubMed PMC
Kabsch, W. (2010). Acta Cryst. D66, 125–132. PubMed PMC
Khakurel, K. P., Angelov, B. & Andreasson, J. (2019). Molecules, 24, 3490. PubMed PMC
Liang, M., Wang, Z., Wu, H., Yu, L., Sun, B., Zhou, H., Yu, F., Wang, Q. & He, J. (2020). Crystals, 10, 798.
Morgan, G. J., Yan, N. L., Mortenson, D. E., Rennella, E., Blundon, J. M., Gwin, R. M., Lin, C. Y., Stanfield, R. L., Brown, S. J., Rosen, H., Spicer, T. P., Fernandez-Vega, V., Merlini, G., Kay, L. E., Wilson, I. A. & Kelly, J. W. (2019). Proc. Natl Acad. Sci. USA, 116, 8360–8369. PubMed PMC
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. PubMed PMC
Nannenga, B. L. & Gonen, T. (2019). Nat. Methods, 16, 369–379. PubMed PMC
Pearson, A. R. & Mehrabi, P. (2020). Curr. Opin. Struct. Biol. 65, 168–174. PubMed
Shoemaker, S. C. & Ando, N. (2018). Biochemistry, 57, 277–285. PubMed PMC
Smyth, M. S. & Martin, J. H. (2000). Mol. Pathol. 53, 8–14. PubMed PMC
Standfuss, J. & Spence, J. (2017). IUCrJ, 4, 100–101. PubMed PMC
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25. PubMed
Warshel, A. (1998). J. Biol. Chem. 273, 27035–27038. PubMed
Weiss, M. S., Palm, G. J. & Hilgenfeld, R. (2000). Acta Cryst. D56, 952–958. PubMed
On-the-fly resolution enhancement in X-ray protein crystallography using electric field
Hemoglobin Variants as Targets for Stabilizing Drugs