Hemoglobin Variants as Targets for Stabilizing Drugs

. 2025 Jan 17 ; 30 (2) : . [epub] 20250117

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39860253

Grantová podpora
APVV-23-0212 Agentúra na Podporu Výskumu a Vývoja
62410140 International Visegrad Fund
09I03-03-V03-00008 European Union's NextGenerationEU

Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide. Genetic variations in hemoglobin chains, such as those underlying sickle cell disease and thalassemias, present substantial clinical challenges. Here, we review the progress in research, including the use of allosteric modulators, pharmacological chaperones, and antioxidant treatments, which has begun to improve hemoglobin stability and oxygen affinity. According to UniProt (as of 7 August 2024), 819 variants of the α-hemoglobin subunit and 771 variants of the β-hemoglobin subunit have been documented, with over 116 classified as unstable. These data demonstrate the urgent need to develop variant-specific stabilizing options. Beyond small-molecule drugs/binders, novel protein-based strategies-such as engineered hemoglobin-binding proteins (including falcilysin, llama-derived nanobodies, and α-hemoglobin-stabilizing proteins)-offer promising new options. As our understanding of hemoglobin's structural and functional diversity grows, so does the potential for genotype-driven approaches. Continued research into hemoglobin stabilization and ligand-binding modification may yield more precise, effective treatments and pave the way toward effective strategies for hemoglobinopathies.

Zobrazit více v PubMed

Perutz M.F. Stereochemical mechanism of oxygen transport by haemoglobin. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1980;208:135–162. PubMed

Bellelli A. Hemoglobin and Cooperativity: Experiments and Theories. Curr. Protein Pept. Sci. 2010;11:2–36. doi: 10.2174/138920310790274653. PubMed DOI

Riggs A.F. The Bohr Effect. Annu. Rev. Physiol. 1988;50:181–204. doi: 10.1146/annurev.ph.50.030188.001145. PubMed DOI

Tyuma I., Shimizu K. Different response to organic phosphates of human fetal and adult hemoglobins. Arch. Biochem. Biophys. 1969;129:404–405. doi: 10.1016/0003-9861(69)90192-1. PubMed DOI

Safo M.K., Ahmed M.H., Ghatge M.S., Boyiri T. Hemoglobin–ligand binding: Understanding Hb function and allostery on atomic level. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2011;1814:797–809. doi: 10.1016/j.bbapap.2011.02.013. PubMed DOI

Ahmed M.H., Ghatge M.S., Safo M.K. Hemoglobin: Structure, Function and Allostery. Subcell. Biochem. 2020;94:345–382. PubMed PMC

Randad R.S., Mahran M.A., Mehanna A.S., Abraham D.J. Allosteric modifiers of hemoglobin. 1. Design, synthesis, testing, and structure-allosteric activity relationship of novel hemoglobin oxygen affinity decreasing agents. J. Med. Chem. 1991;34:752–757. doi: 10.1021/jm00106a041. PubMed DOI

Ronda L., Bruno S., Abbruzzetti S., Viappiani C., Bettati S. Ligand reactivity and allosteric regulation of hemoglobin-based oxygen carriers. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2008;1784:1365–1377. doi: 10.1016/j.bbapap.2008.04.021. PubMed DOI

Ciaccio C., Coletta A., De Sanctis G., Marini S., Coletta M. Cooperativity and allostery in haemoglobin function. IUBMB Life. 2008;60:112–123. doi: 10.1002/iub.6. PubMed DOI

Maillett D.H., Simplaceanu V., Shen T.-J., Ho N.T., Olson J.S., Ho C. Interfacial and Distal-Heme Pocket Mutations Exhibit Additive Effects on the Structure and Function of Hemoglobin. Biochemistry. 2008;47:10551–10563. doi: 10.1021/bi800816v. PubMed DOI PMC

Brunori M., Miele A.E. Modulation of Allosteric Control and Evolution of Hemoglobin. Biomolecules. 2023;13:572. doi: 10.3390/biom13030572. PubMed DOI PMC

Storz J.F. Hemoglobin. Oxford University Press; Oxford, UK: 2018. Hemoglobin structure and allosteric mechanism; pp. 58–93.

Ferguson J.K.W., Roughton F.J.W. The chemical relationships and physiological importance of carbamino compounds of CO2 with hæmoglobin. J. Physiol. 1934;83:87–102. doi: 10.1113/jphysiol.1934.sp003213. PubMed DOI PMC

Chan N.-L., Kavanaugh J.S., Rogers P.H., Arnone A. Crystallographic Analysis of the Interaction of Nitric Oxide with Quaternary-T Human Hemoglobin. Biochemistry. 2003;43:118–132. doi: 10.1021/bi030172j. PubMed DOI

Allen B.W., Stamler J.S., Piantadosi C.A. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol. Med. 2009;15:452–460. doi: 10.1016/j.molmed.2009.08.002. PubMed DOI PMC

Hamasaki N., Rose Z.B. The Binding of Phosphorylated Red Cell Metabolites to Human Hemoglobin A. J. Biol. Chem. 1974;249:7896–7901. doi: 10.1016/S0021-9258(19)42050-4. PubMed DOI

Garby L., De Verdier C.-H. Affinity of Human Hemoglobin a to 2,3—Diphosphoglycerate. Effect of Hemoglobin Concentration and of pH. Scand. J. Clin. Lab. Investig. 1971;27:345–350. doi: 10.3109/00365517109080229. PubMed DOI

Beek G.G.M., Bruin S.H. The pH Dependence of the Binding of d-Glycerate 2,3-Bisphosphate to Deoxyhemoglobin and Oxyhemoglobin. Determination of the Number of Binding Sites in Oxyhemoglobin. Eur. J. Biochem. 1979;100:497–502. doi: 10.1111/j.1432-1033.1979.tb04194.x. PubMed DOI

Isaacks R.E. Advances in Experimental Medicine and Biology. Springer; New York, NY, USA: 1988. Can Metabolites Contribute in Regulating Blood Oxygen Affinity? pp. 137–143. PubMed

Mulquiney P.J., Kuchel P.W. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: Equations and parameter refinement. Biochem. J. 1999;342:581–596. doi: 10.1042/bj3420581. PubMed DOI PMC

Kayikci M., Venkatakrishnan A.J., Scott-Brown J., Ravarani C.N.J., Flock T., Babu M.M. Visualization and analysis of non-covalent contacts using the Protein Contacts Atlas. Nat. Struct. Mol. Biol. 2018;25:185–194. doi: 10.1038/s41594-017-0019-z. PubMed DOI PMC

López F.J.B., Centurion I.F., Díaz F.J.P., Pacheco C.M., Cortés B.I., Mendoza B.M.T., Flores-Jimenez J.A., Torre L.D.C.R.-D.L. Structural Effect of Gγ and Aγ Globin Chains in Fetal Hemoglobin Tetramer. Blood. 2023;142((Suppl. S1)):2291. doi: 10.1182/blood-2023-188988. DOI

Sharma S.K., Lechner R.B. Hematologic and coagulation disorders. In: Chestnut D.H., editor. Obstetric Anesthesia: Principles and Practice. 2nd ed. Mosby Inc.; St. Louis, MO, USA: 1999.

Manca L., Masala B. Disorders of the synthesis of human fetal hemoglobin. IUBMB Life. 2008;60:94–111. doi: 10.1002/iub.4. PubMed DOI

He L., Rockwood A.L., Agarwal A.M., Anderson L.C., Weisbrod C.R., Hendrickson C.L., Marshall A.G. Diagnosis of Hemoglobinopathy and β-Thalassemia by 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry of Hemoglobin from Blood. Clin. Chem. 2019;65:986–994. doi: 10.1373/clinchem.2018.295766. PubMed DOI

Kim J.-S., Kim H.S. Diagnosis of hemoglobinopathy and β-thalassemia by 21-Tesla Fourier transform ion cyclotron resonance mass spectrometry. Ann. Transl. Med. 2019;7((Suppl. S6)):S239. doi: 10.21037/atm.2019.07.97. PubMed DOI PMC

Carrocini G.C.d.S., Zamaro P.J.A., Bonini-Domingos C.R. What influences Hb fetal production in adulthood? Rev. Bras. Hematol. Hemoter. 2011;33:231–236. doi: 10.5581/1516-8484.20110059. PubMed DOI PMC

Hempe J.M., Craver R.D. Clinical Applications of Capillary Electrophoresis. Humana Press; Totowa, NJ, USA: 1999. Laboratory Diagnosis of Structural Hemoglobinopathies and Thalassemias by Capillary Isoelectric Focusing; pp. 81–98. PubMed

Little R.R., Roberts W.L. A Review of Variant Hemoglobins Interfering with Hemoglobin A1c Measurement. J. Diabetes Sci. Technol. 2009;3:446–451. doi: 10.1177/193229680900300307. PubMed DOI PMC

Fontana L., Alahouzou Z., Miccio A., Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes. 2023;14:577. doi: 10.3390/genes14030577. PubMed DOI PMC

Modell B. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 2008;86:480–487. doi: 10.2471/BLT.06.036673. PubMed DOI PMC

Turbpaiboon C., Wilairat P. Alpha-hemoglobin stabilizing protein: Molecular function and clinical correlation. Front. Biosci. 2010;15:1–11. doi: 10.2741/3601. PubMed DOI

Cardiero G., Musollino G., Prezioso R., Lacerra G. mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] Biomedicines. 2021;9:1390. doi: 10.3390/biomedicines9101390. PubMed DOI PMC

Yang P., Chou S.-J., Li J., Hui W., Liu W., Sun N., Zhang R.Y., Zhu Y., Tsai M.-L., Lai H.I., et al. Supramolecular nanosubstrate–mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. Sci. Adv. 2020;6:eabb7107. doi: 10.1126/sciadv.abb7107. PubMed DOI PMC

Nualkaew T., Sii-Felice K., Giorgi M., McColl B., Gouzil J., Glaser A., Voon H.P., Tee H.Y., Grigoriadis G., Svasti S., et al. Coordinated β-globin expression and α2-globin reduction in a multiplex lentiviral gene therapy vector for β-thalassemia. Mol. Ther. 2021;29:2841–2853. doi: 10.1016/j.ymthe.2021.04.037. PubMed DOI PMC

Kiem H.-P., I Arumugam P., Burtner C.R., Fox C.F., Beard B.C., Dexheimer P., E Adair J., Malik P. Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. Mol. Ther. Methods Clin. Dev. 2014;1:14055. doi: 10.1038/mtm.2014.55. PubMed DOI PMC

Thom C.S., Dickson C.F., Gell D.A., Weiss M.J. Hemoglobin Variants: Biochemical Properties and Clinical Correlates. Cold Spring Harb. Perspect. Med. 2013;3:a011858. doi: 10.1101/cshperspect.a011858. PubMed DOI PMC

Masson E., Zou W.-B., Génin E., Cooper D.N., Le Gac G., Fichou Y., Pu N., Rebours V., Férec C., Liao Z., et al. Expanding ACMG variant classification guidelines into a general framework. Hum. Genom. 2022;16:31. doi: 10.1186/s40246-022-00407-x. PubMed DOI PMC

Carss K., Goldstein D., Aggarwal V., Petrovski S. Variant Interpretation and Genomic Medicine. In: Balding D., Moltke I., Marioni J., editors. Handbook of Statistical Genomics. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2019. DOI

Chen J.-M., Masson E., Zou W.-B., Liao Z., Génin E., Cooper D.N., Férec C. Validation of the ACMG/AMP guidelines-based seven-category variant classification system. medRxiv. 2023 doi: 10.1101/2023.01.23.23284909. DOI

Walsh N., Cooper A., Dockery A., O’Byrne J.J. Variant reclassification and clinical implications. J. Med. Genet. 2024;61:207–211. doi: 10.1136/jmg-2023-109488. PubMed DOI

Sabath D.E. Molecular Diagnosis of Thalassemias and Hemoglobinopathies. Am. J. Clin. Pathol. 2017;148:6–15. doi: 10.1093/ajcp/aqx047. PubMed DOI

Kountouris P., Stephanou C., Lederer C.W., Traeger-Synodinos J., Bento C., Harteveld C.L., Fylaktou E., Koopmann T.T., Halim-Fikri H., Michailidou K., et al. Adapting the ACMG/AMP variant classification framework: A perspective from the ClinGen Hemoglobinopathy Variant Curation Expert Panel. Hum. Mutat. 2021;43:1089–1096. doi: 10.1002/humu.24280. PubMed DOI PMC

Turner S.A., Rao S.K., Morgan R.H., Vnencak-Jones C.L., Wiesner G.L. The impact of variant classification on the clinical management of hereditary cancer syndromes. Anesth. Analg. 2019;21:426–430. doi: 10.1038/s41436-018-0063-z. PubMed DOI

David S., Nora Syahirah S., Muhammad Nur Salam Bin H., Rajan R. The Blood Blues: A Review on Methemoglobinemia. J. Pharmacol. Pharmacother. 2018;9:5.

Boylston M., Beer D. Methemoglobinemia: A case study. Crit. Care Nurse. 2002;22:50–55. doi: 10.4037/ccn2002.22.4.50. PubMed DOI

Ashurst J., Wasson M. Methemoglobinemia: A systematic review of the pathophysiology, detection, and treatment. Delw. Med. J. 2011;83:203–208. PubMed

Nascimento T.S.D., Pereira R.O.L., de Mello H.L.D., Costa J. Metemoglobinemia: Do diagnóstico ao tratamento. Braz. J. Anesthesiol. 2008;58:651–664. doi: 10.1590/S0034-70942008000600011. DOI

Iolascon A., Bianchi P., Andolfo I., Russo R., Barcellini W., Fermo E., Toldi G., Ghirardello S., Rees D., Van Wijk R., et al. Recommendations for diagnosis and treatment of methemoglobinemia. Am. J. Hematol. 2021;96:1666–1678. doi: 10.1002/ajh.26340. PubMed DOI PMC

Ash-Bernal R., Wise R., Wright S.M. Acquired Methemoglobinemia: A retrospective series of 138 cases at 2 teaching hospitals. Medicine. 2004;83:265–273. doi: 10.1097/01.md.0000141096.00377.3f. PubMed DOI

Friedman N., Scolnik D., McMurray L., Bryan J. Acquired methemoglobinemia presenting to the pediatric emergency department: A clinical challenge. CJEM. 2020;22:673–677. doi: 10.1017/cem.2020.33. PubMed DOI

Karna B., Jha S.K., Al Zaabi E. Hemoglobin C Disease. [(accessed on 12 August 2024)];2023 Available online: https://www.ncbi.nlm.nih.gov/books/NBK559043/

Charache S., Conley C.L., Waugh D.F., Ugoretz R.J., Spurrell J.R. Pathogenesis of Hemolytic Anemia in Homozygous Hemoglobin C Disease. J. Clin. Investig. 1967;46:1795–1811. doi: 10.1172/JCI105670. PubMed DOI PMC

Schmidt K.L., Randolph T.R. Development of a Microscopic Method to Identify Hemoglobin C Conditions for Use in Developing Countries. Am. Soc. Clin. Lab. Sci. 2019;32:61–66. doi: 10.29074/ascls.2019001412. DOI

Ohiri C.D., Randolph T.R. Development of an easy, inexpensive, and precise method to identify Hemoglobin C for use in underdeveloped countries. FASEB J. 2016;30:61–66. doi: 10.1096/fasebj.30.1_supplement.1082.4. DOI

Verra F., Simpore J., Warimwe G.M., Tetteh K.K., Howard T., Osier F.H.A., Bancone G., Avellino P., Blot I., Fegan G., et al. Haemoglobin C and S Role in Acquired Immunity against Plasmodium falciparum Malaria. PLoS ONE. 2007;2:e978. doi: 10.1371/journal.pone.0000978. PubMed DOI PMC

Ghosh A., Basak J., Mukhopadhyay A. Coexistence of rare variant HbD Punjab [α2β2121(Glu→Gln)] and alpha 3.7 kb deletion in a young boy of Hindu family in West Bengal, India. Cell. Mol. Biol. Lett. 2015;20:736–742. doi: 10.1515/cmble-2015-0043. PubMed DOI

Italia K., Upadhye D., Dabke P., Kangane H., Colaco S., Sawant P., Nadkarni A., Gorakshakar A., Jain D., Italia Y., et al. Clinical and hematological presentation among Indian patients with common hemoglobin variants. Clin. Chim. Acta. 2014;431:46–51. doi: 10.1016/j.cca.2014.01.028. PubMed DOI

Oberoi S.M., Das R., Trehan A., Ahluwalia J., Bansal D.M., Malhotra P., Marwaha R.K.M. HbSD-Punjab. J. Pediatr. Hematol. 2014;36:e140–e144. doi: 10.1097/MPH.0000000000000049. PubMed DOI

Pandey S., Mishra R.M., Pandey S., Shah V., Saxena R. Molecular characterization of hemoglobin D Punjab traits and clinical-hematological profile of the patients. Sao Paulo Med. J. 2012;130:248–251. doi: 10.1590/S1516-31802012000400008. PubMed DOI PMC

A Petrenko A., Pivnik A.V., Kim P.P., Demidova E.Y., Surin V.L., O Abdullaev A., Sudarikov A.B., A Petrova N., A Maryina S. Coinheritance of HbD-Punjab/β+-thalassemia (IVSI+5 G-C) in patient with Gilbert’s syndrome. Ter. Arkh. 2018;90:105–109. doi: 10.26442/terarkh2018907105-109. PubMed DOI

Rieder R. Globin chain synthesis in HbD (Punjab)-beta-thalassemia. Blood. 1976;47:113–120. doi: 10.1182/blood.V47.1.113.113. PubMed DOI

Ohashi J., Naka I., Patarapotikul J., Hananantachai H., Brittenham G., Looareesuwan S., Clark A.G., Tokunaga K. Extended Linkage Disequilibrium Surrounding the Hemoglobin E Variant Due to Malarial Selection. Am. J. Hum. Genet. 2004;74:1198–1208. doi: 10.1086/421330. PubMed DOI PMC

Flatz G., Sanguansermsri T., Sengchanh S., Horst D., Horst J. The ‘Hot Spot’ of Hb E [β26(B8)Glu→Lys] in Southeast Asia: β-Globin Anomalies in the Lao Theung Population of Southern Laos. Hemoglobin. 2004;28:197–204. doi: 10.1081/HEM-120040334. PubMed DOI

Roche C.J., Malashkevich V., Balazs T.C., Dantsker D., Chen Q., Moreira J., Almo S.C., Friedman J.M., Hirsch R.E. Structural and Functional Studies Indicating Altered Redox Properties of Hemoglobin E. J. Biol. Chem. 2011;286:23452–23466. doi: 10.1074/jbc.M110.183186. PubMed DOI PMC

Strader M.B., Kassa T., Meng F., Wood F.B., Hirsch R.E., Friedman J.M., Alayash A.I. Oxidative instability of hemoglobin E (β26 Glu→Lys) is increased in the presence of free α subunits and reversed by α-hemoglobin stabilizing protein (AHSP): Relevance to HbE/β-thalassemia. Redox Biol. 2016;8:363–374. doi: 10.1016/j.redox.2016.03.004. PubMed DOI PMC

Jamsai D., Zaibak F., Vadolas J., Voullaire L., Fowler K.J., Gazeas S., Peters H., Fucharoen S., Williamson R., Ioannou P.A. A humanized BAC transgenic/knockout mouse model for HbE/β-thalassemia. Genomics. 2006;88:309–315. doi: 10.1016/j.ygeno.2006.03.009. PubMed DOI

Naka I., Ohashi J., Nuchnoi P., Hananantachai H., Looareesuwan S., Tokunaga K., Patarapotikul J. Lack of Association of the HbE Variant with Protection from Cerebral Malaria in Thailand. Biochem. Genet. 2008;46:708–711. doi: 10.1007/s10528-008-9185-3. PubMed DOI

Kidd R.D., Baker H.M., Mathews A.J., Brittain T., Baker E.N. Oligomerization and ligand binding in a homotetrameric hemoglobin: Two high-resolution crystal structures of hemoglobin Bart’s (γ4), a marker for α-thalassemia. Protein Sci. 2001;10:1739–1749. doi: 10.1110/ps.11701. PubMed DOI PMC

Pootrakul S., Wasi P., Na-Nakorn S. Haemoglobin Bart’s hydrops foetalis in Thailand. Ann. Hum. Genet. 1967;30:293–311. doi: 10.1111/j.1469-1809.1967.tb00031.x. PubMed DOI

Pembrey M.E., Weatherall D.J., Clegg J.B., Bunch C., Perrine R.P. Haemoglobin Bart’s in Saudi Arabia. Br. J. Haematol. 1975;29:221–234. doi: 10.1111/j.1365-2141.1975.tb01816.x. PubMed DOI

Czerwinski E., Czerwinski E., Risk M., Risk M., Matustik M., Matustik M. Crystallization and preliminary X-ray diffraction studies of methemoglobin Bart’s. J. Biol. Chem. 1981;256:13128–13129. doi: 10.1016/S0021-9258(18)43016-5. PubMed DOI

Papassotiriou I., Traeger-Synodinos J., Vlachou C., Karagiorga M., Metaxotou A., Kanavakis E., Stamoulakatou A. Rapid and Accurate Quantitation of Hb Bart’s and Hb H Using Weak Cation Exchange High Performance Liquid Chromatography: Correlation with the α-Thalassemia Genotype. Hemoglobin. 1999;23:203–211. doi: 10.3109/03630269909005700. PubMed DOI

Rugless M.J., Fisher C.A., Stephens A.D., Amos R.J., Mohammed T., Old J.M. Hb Bart’s in Cord Blood: An Accurate Indicator of α-Thalassemia. Hemoglobin. 2006;30:57–62. doi: 10.1080/03630260500454550. PubMed DOI

Sasazuki T., Isomoto A., Nakajima H. Circular dichroism and absorption spectra of haemoglobin Bart’s. J. Mol. Biol. 1972;65:365–369. doi: 10.1016/0022-2836(72)90287-2. PubMed DOI

Esan G.J.F. Haemoglobin Bart’s in Newborn Nigerians. Br. J. Haematol. 1972;22:73–86. doi: 10.1111/j.1365-2141.1972.tb08788.x. PubMed DOI

Gibson Q.H., Nagel R.L. Allosteric Transition and Ligand Binding in Hemoglobin Chesapeake. J. Biol. Chem. 1974;249:7255–7259. doi: 10.1016/S0021-9258(19)42099-1. PubMed DOI

Jones C.M., Charache S., Hathaway P. The effect of hemoglobin F-Chesapeake (α292 Arg.→Leuγ2) on fetal oxygen affinity and erythropoiesis. Pediatr. Res. 1979;13:851–853. doi: 10.1203/00006450-197907000-00011. PubMed DOI

Charache S. A manifestation of abnormal hemoglobins of man: Altered oxygen affinity. Hemoglobin Chesapeake: From the clinic to the laboratory, and back again. Ann. N. Y. Acad. Sci. 1974;241:449–455. doi: 10.1111/j.1749-6632.1974.tb21901.x. PubMed DOI

Wajcman H., Galactéros F. Hemoglobins with High Oxygen Affinity Leading to Erythrocytosis. New Variants and New Concepts. Hemoglobin. 2005;29:91–106. doi: 10.1081/HEM-58571. PubMed DOI

Harteveld C.L., Wijermans P.W., Arkesteijn S.G., Van Delft P., Kerkhoffs J.-L., Giordano P.C. Hb Lepore-Leiden: A New δ/β Rearrangement Associated with a β-Thalassemia Minor Phenotype. Hemoglobin. 2008;32:446–453. doi: 10.1080/03630260802173429. PubMed DOI

Pirastru M., Manca L., Trova S., Mereu P. Biochemical and Molecular Analysis of the Hb Lepore Boston Washington in a Syrian Homozygous Child. BioMed Res. Int. 2017;2017:1261972. doi: 10.1155/2017/1261972. PubMed DOI PMC

Mirabile E., Testa R., Consalvo C., Dickerhoff R., Schilirò G. Association of Hb S/Hb lepore and δβ-thalassemia/Hb lepore in Sicilian patients: Review of the presence of Hb lepore in Sicily. Eur. J. Haematol. 1995;55:126–130. doi: 10.1111/j.1600-0609.1995.tb01822.x. PubMed DOI

Seward D.P., Ware R.E., Kinney T.R. Hemoglobin sickle-lepore: Report of two siblings and review of the literature. Am. J. Hematol. 1993;44:192–195. doi: 10.1002/ajh.2830440310. PubMed DOI

Efremov G.D. Hemoglobins Lepore and Anti-Lepore. Hemoglobin. 1978;2:197–233. doi: 10.3109/03630267809007068. PubMed DOI

Chaibunruang A., Srivorakun H., Fucharoen S., Fucharoen G., Sae-Ung N., Sanchaisuriya K. Interactions of hemoglobin Lepore (deltabeta hybrid hemoglobin) with v arious hemoglobinopathies: A molecular and hematological characteristi cs and differential diagnosis. Blood Cells Mol. Dis. 2010;44:140–145. doi: 10.1016/j.bcmd.2009.11.008. PubMed DOI

Jiang F., Tang X.-W., Li J., Zhou J.-Y., Zuo L.-D., Li D.-Z. Hb Lepore-Hong Kong: First Report of a Novel δ/β-Globin Gene Fusion in a Chinese Family. Hemoglobin. 2021;45:220–224. doi: 10.1080/03630269.2021.1956945. PubMed DOI

Hunt D.M., Higgs D.R., Winichagoon P., Clegg J.B., Weatherall D.J. Haemoglobin Constant Spring has an unstable α chain messenger RNA. Br. J. Haematol. 1982;51:405–413. doi: 10.1111/j.1365-2141.1982.tb02796.x. PubMed DOI

Thonglairoam V., Fucharoen S., Tanphaichitr V.S., Pung-Amritt P., Embury S.H., Winichagoon P., Wasi P. Hemoglobin constant spring in bangkok: Molecular screening by selective enzymatic amplification of the α2-globin gene. Am. J. Hematol. 1991;38:277–280. doi: 10.1002/ajh.2830380405. PubMed DOI

Nguyen V.H., Sanchaisuriya K., Wongprachum K., Nguyen M.D., Phan T.T.H., Vo V.T., Sanchaisuriya P., Fucharoen S., Schelp F.P. Hemoglobin Constant Spring is markedly high in women of an ethnic minority group in Vietnam: A community-based survey and hematologic features. Blood Cells Mol. Dis. 2014;52:161–165. doi: 10.1016/j.bcmd.2013.12.002. PubMed DOI

Jomoui W., Fucharoen G., Sanchaisuriya K., Nguyen V.H., Fucharoen S. Hemoglobin Constant Spring among Southeast Asian Populations: Haplotypic Heterogeneities and Phylogenetic Analysis. PLoS ONE. 2015;10:e0145230. doi: 10.1371/journal.pone.0145230. PubMed DOI PMC

Charoenkwan P., Sirichotiyakul S., Chanprapaph P., Tongprasert F., Taweephol R., Sae-Tung R., Sanguansermsri T. Anemia and Hydrops in a Fetus with Homozygous Hemoglobin Constant Spring. J. Pediatr. Hematol. 2006;28:827–830. doi: 10.1097/01.mph.0000243662.56432.37. PubMed DOI

Kropp G., Fucharoen S., Embury S. Selective enzymatic amplification of alpha 2-globin DNA for detection of the hemoglobin Constant Spring mutation. Blood. 1989;73:1987–1992. doi: 10.1182/blood.V73.7.1987.1987. PubMed DOI

Roberts W.L. Hemoglobin Constant Spring Can Interfere with Glycated Hemoglobin Measurements by Boronate Affinity Chromatography. Clin. Chem. 2007;53:142–143. doi: 10.1373/clinchem.2007.078824. PubMed DOI

Zimmerman S.A., O’Branski E.E., Rosse W.F., Ware R.E. Hemoglobin S/O(Arab): Thirteen new cases and review of the lit-erature. Am. J. Hematol. 1999;60:279–284. doi: 10.1002/(SICI)1096-8652(199904)60:4<279::AID-AJH5>3.0.CO;2-2. PubMed DOI

Dror S. Clinical and hematological features of homozygous hemoglobin O-Arab [beta 121 Glu → Lys] Pediatr. Blood Cancer. 2012;60:506–507. doi: 10.1002/pbc.24414. PubMed DOI

Sangaré A., Sanogo I., Meité M., Ambofo Y., Abesopie V., Ségbéna A., Tolo A. Hemoglobin O Arab in Ivory Coast and western Africa. Med. Trop. (Mars) 1992;52:163–167. PubMed

El-Hazmi M., Lehmann H. Human Haemoglobins and Haemoglobinopathies in Arabia: Hb O Arab in Saudi Arabia. Acta Haematol. 1980;63:268–273. doi: 10.1159/000207414. PubMed DOI

Milner P.F., Miller C., Grey R., Seakins M., DeJong W.W., Went L.N. Hemoglobin O Arab in Four Negro Families and Its Interaction with Hemoglobin S and Hemoglobin C. N. Engl. J. Med. 1970;283:1417–1425. doi: 10.1056/NEJM197012242832601. PubMed DOI

Hafsia R., Gouider E., Ben Moussa S., Ben Salah N., Elborji W., Hafsia A. Hemoglobin O Arab: About 20 cases. Tunis. Med. 2007;85:637–640. PubMed

Merritt D., Jones R.T., Head C., Thibodeau S.N., Fairbanks V.F., Steinberg M.H., Coleman M.B., Rodgers G.P. HB Seal Rock [(α2)142 Term→glu, Codon 142 TAA→GAA]: An Extended α Chain Variant Associated with Anemia, Microcytosis, and α-Thalassemia-2 (-3.7 KB) Hemoglobin. 1997;21:331–344. doi: 10.3109/03630269709000666. PubMed DOI

Préhu C., Moradkhani K., Riou J., Bahuau M., Launay P., Martin N., Wajcman H., Goossens M., Galactéros F. Chronic hemolytic anemia due to novel -globin chain variants: Critical location of the mutation within the gene sequence for a dominant effect. Haematologica. 2009;94:1624–1625. doi: 10.3324/haematol.2009.012971. PubMed DOI PMC

Fattori A., Kimura E., Albuquerque D., Oliveira D., Costa F., Sonati M. Hb Indianapolis [β112 (G14) Cys→Arg] as the probable cause of moderate hemolytic anemia and renal damage in a Brazilian patient. Am. J. Hematol. 2007;82:672–675. doi: 10.1002/ajh.20860. PubMed DOI

Henderson S.J., Timbs A.T., McCarthy J., Gallienne A.E., Proven M., Rugless M.J., Lopez H., Eglinton J., Dziedzic D., Beardsall M., et al. Ten Years of Routineα- andβ-Globin Gene Sequencing in UK Hemoglobinopathy Referrals Reveals 60 Novel Mutations. Hemoglobin. 2016;40:75–84. doi: 10.3109/03630269.2015.1113990. PubMed DOI

Outeirino J., Casey R., White J., Lehmann H. Haemoglobin Madrid β115 (G17) Alanine→Proline: An Unstable Variant Associated with Haemolytic Anaemia. Acta Haematol. 1974;52:53–60. doi: 10.1159/000208220. PubMed DOI

Kim J.Y., Park S.S., Jung H.L., Keum D.H., Park H., Chang Y.H., Lee Y.J., Cho H.I. Hb Madrid [β115(G17)Ala→Pro] in a Korean Family with Chronic Hemolytic Anemia. Hemoglobin. 2000;24:133–138. doi: 10.3109/03630260009003432. PubMed DOI

Edison E.S., Shaji R.V., Devi S.G., Kumar S.S., Srivastava A., Chandy M. Hb Showa-Yakushiji [beta110(G12)Leu-->Pro] in four unrelated patients from west Bengal. Hemoglobin. 2005;29:19–25. doi: 10.1081/HEM-47613. PubMed DOI

Villegas A., Ropero P., Nogales A., González F.A., Mateo M., Mazo E., Rodrigo E., Arias M. Hb Santander [β34(B16)Val→Asp (GTC → GAC)]: A New Unstable Variant Found as a De Novo Mutation in a Spanish Patient. Hemoglobin. 2003;27:31–35. doi: 10.1081/HEM-120016378. PubMed DOI

Nakatsuji T., Miwa S., Ohba Y., Hattori Y., Miyaji T., Hino S., Matsumoto N. A New Unstable Hemoglobin, Hb Yokohama β31(B13)LEU → Pro, Causing Hemolytic Anemia. Hemoglobin. 1981;5:667–678. doi: 10.3109/03630268108991834. PubMed DOI

Huehns E.R., Hecht F., Yoshida A., Stamatoyannopoulos G., Hartman J., Motulsky A.G. Hemoglobin-Seattle (α2Aβ276 Glu): An Unstable Hemoglobin Causing Chronic Hemolytic Anemia. Blood. 1970;36:209–218. doi: 10.1182/blood.V36.2.209.209. PubMed DOI

Hoyer J.D., Baxter J.K., Moran A.M., Kubic K.S., Ehmann W.C. Two Unstable β Chain Variants Associated with β-Thalassemia: Hb Miami [β116(G18)His→Pro], and Hb Hershey [β70(E14)Ala→Gly], and a Second Unstable Hb Variant at β70: Hb Abington [β70(E14)Ala→Pro] Hemoglobin. 2005;29:241–248. doi: 10.1080/03630260500307626. PubMed DOI

Li W. Biophysical Basis of Hb-S Polymerization in Red Blood Cell Sickling. bioRxiv. 2019 doi: 10.1101/676957. DOI

Karen C. Sickle Cell Disease: A Genetic Disorder of Beta-Globin. Thalassemia and Other Hemolytic Anemias. IntechOpen; Rijeka, Croatia: 2018.

Ellsworth P., Sparkenbaugh E.M. Targeting the von Willebrand Factor–ADAMTS-13 axis in sickle cell disease. J. Thromb. Haemost. 2023;21:2–6. doi: 10.1016/j.jtha.2022.10.024. PubMed DOI PMC

Nader E., Romana M., Connes P. The Red Blood Cell—Inflammation Vicious Circle in Sickle Cell Disease. Front. Immunol. 2020;11:454. doi: 10.3389/fimmu.2020.00454. PubMed DOI PMC

Ashley-Koch A., Yang Q., Olney R.S. Sickle Hemoglobin (Hb S) Allele and Sickle Cell Disease: A HuGE Review. Am. J. Epidemiol. 2000;151:839–845. doi: 10.1093/oxfordjournals.aje.a010288. PubMed DOI

Al-Fatlawi A.C.Y. A Review on Sickle Cells Disease. Sci. J. Med. Res. 2019;3:146–148. doi: 10.37623/SJMR.2019.31207. DOI

Poli M.C., Orange J. CRISPR/Cas9β-globin Gene Targeting in Human Haematopoietic Stem Cells. Nature. 2017;140((Suppl. S3)):S226–S227.

Demirci S., Gudmundsdottir B., Li Q., Haro-Mora J.J., Nassehi T., Drysdale C., Yapundich M., Gamer J., Seifuddin F., Tisdale J.F., et al. βT87Q-Globin Gene Therapy Reduces Sickle Hemoglobin Production, Allowing for Ex Vivo Anti-sickling Activity in Human Erythroid Cells. Mol. Ther. Methods Clin. Dev. 2020;17:912–921. doi: 10.1016/j.omtm.2020.04.013. PubMed DOI PMC

De Simone G., Quattrocchi A., Mancini B., di Masi A., Nervi C., Ascenzi P. Thalassemias: From gene to therapy. Mol. Asp. Med. 2022;84:101028. doi: 10.1016/j.mam.2021.101028. PubMed DOI

Angastiniotis M., Lobitz S. Thalassemias: An Overview. Int. J. Neonatal Screen. 2019;5:16. doi: 10.3390/ijns5010016. PubMed DOI PMC

Weatherall D.J. Fortnightly review: The thalassaemias. BMJ. 1997;314:1675–1678. doi: 10.1136/bmj.314.7095.1675. PubMed DOI PMC

Muncie H., James C. Alpha and beta thalassemia. Am. Fam. Physician. 2009;80:339–344. PubMed

Vernimmen D. Globins, from Genes to Physiology and Diseases. Blood Cells Mol. Dis. 2018;70:1. doi: 10.1016/j.bcmd.2017.02.002. PubMed DOI

Aksu T., Unal S. Thalassemia. Trends Pediatr. 2021;2:1–7. doi: 10.5222/TP.2021.10820. DOI

Meri M.A., Al-Hakeem A.H., Al-Abeadi R.S. Overview on thalassemia: A review article. Med. Sci. J. Adv. Res. 2022;3:26–32. doi: 10.46966/msjar.v3i1.36. DOI

Reiss G.H., Ranney H.M., Shaklai N. Association of hemoglobin C with erythrocyte ghosts. J. Clin. Investig. 1982;70:946–952. doi: 10.1172/JCI110706. PubMed DOI PMC

Singh N., Seth T., Tyagi S. Review of Clinical and Hematological Profile of Hemoglobin D Cases in a Single Centre. J. Mar. Med. Soc. 2023;25((Suppl. S1)):S74–S79. doi: 10.4103/jmms.jmms_165_22. DOI

Mukherjee S., Das M., Basu K., Sengupta M., Karmakar S., Jha A.K., Bandopadhyay M. HbE Variants: An Experience from Tertiary Care Centre of Eastern India. Ann. Pathol. Lab. Med. 2020;7:A570–A575. doi: 10.21276/apalm.2906. DOI

Winterbourn C.C. Oxidative denaturation in congenital hemolytic anemias: The unstable hemoglobins. Semin. Hematol. 1990;27:41–50. PubMed

Taketa F., Huang Y., Libnoch J., Dessel B. Hemoglobin wood β97(FG4) His → Leu: A new high-oxygen-affinity hemoglobin associated with familial erythrocytosis. Biochim. Biophys. Acta (BBA) Protein Struct. 1975;400:348–353. doi: 10.1016/0005-2795(75)90190-7. PubMed DOI

Reed C.S., Hampson R., Gordon S., Jones R.T., Novy M.J., Brimhall B., Edwards M.J., Koler R.D. Erythrocytosis Secondary to Increased Oxygen Affinity of a Mutant Hemoglobin, Hemoglobin Kempsey. Blood. 1968;31:623–632. doi: 10.1182/blood.V31.5.623.623. PubMed DOI

Medri C., Méndez A., Hammerer-Lercher A., Rovó A., Angelillo-Scherrer A. Unstable hemoglobin Montreal II uncovered in an adult with unexplained hemolysis exacerbated by a presumed viral infection: A case report. J. Med. Case Rep. 2022;16:145. doi: 10.1186/s13256-022-03374-y. PubMed DOI PMC

Fallon J.A., Smith E.P., Schoch N., Paruk J.D., Adams E.A., Evers D.C., Jodice P.G., Perkins C., Schulte S., Hopkins W.A. Hematological indices of injury to lightly oiled birds from the Deepwater Horizon oil spill. Environ. Toxicol. Chem. 2018;37:451–461. doi: 10.1002/etc.3983. PubMed DOI

Harr K.E., Cunningham F.L., Pritsos C.A., Pritsos K.L., Muthumalage T., Dorr B.S., Horak K.E., Hanson-Dorr K.C., Dean K.M., Cacela D., et al. Weathered MC252 crude oil-induced anemia and abnormal erythroid morphology in double-crested cormorants (Phalacrocorax auritus) with light microscopic and ultrastructural description of Heinz bodies. Ecotoxicol. Environ. Saf. 2017;146:29–39. doi: 10.1016/j.ecoenv.2017.07.030. PubMed DOI

Sözen M., Karaaslan C., Öner R., Gümrük F., Özdemir M., Altay C., Gürgey A., Öner C. Severe hemolytic anemia associated with Hb Volga [β27(B9)Ala→Asp]: GCC→GAC at codon 27 in a Turkish family. Am. J. Hematol. 2004;76:378–382. doi: 10.1002/ajh.20128. PubMed DOI

Wali Y., Al Zadjali S., Elshinawy M., Beshlawi I., Fawaz N., AlKindi S., Rawas A., Alsinani S., Daar S., Krishnamoorthy R. Severity ranking of non-deletional alpha thalassemic alleles: Insights from an Omani family study. Eur. J. Haematol. 2011;86:507–511. doi: 10.1111/j.1600-0609.2011.01606.x. PubMed DOI

Gallagher P.G. Diagnosis and management of rare congenital nonimmune hemolytic disease. Hematol. Am. Soc. Hematol. Educ. Program. 2015;2015:392–399. doi: 10.1182/asheducation-2015.1.392. PubMed DOI

Fallon J.A., Hopkins W.A., Fox L. A practical quantification method for Heinz bodies in birds applicable to rapid response field scenarios. Environ. Toxicol. Chem. 2013;32:401–405. doi: 10.1002/etc.2058. PubMed DOI

Drouilly M., Jourdan L., Gérard D., Russello J., Bobée V., Audouy A., Phulpin A., Perrin J. Infantile pyknocytosis, a neonatal hemolytic anemia with Heinz bodies: A cohort study. Pediatr. Blood Cancer. 2024;71:e31078. doi: 10.1002/pbc.31078. PubMed DOI

Furdak P., Bartosz G., Stefaniuk I., Cieniek B., Bieszczad-Bedrejczuk E., Soszyński M., Sadowska-Bartosz I. Effect of Garlic Extract on the Erythrocyte as a Simple Model Cell. Int. J. Mol. Sci. 2024;25:5115. doi: 10.3390/ijms25105115. PubMed DOI PMC

Salgado B., Monteiro L., Rocha N. Allium species poisoning in dogs and cats. J. Venom. Anim. Toxins Incl. Trop. Dis. 2011;17:4–11. doi: 10.1590/S1678-91992011000100002. DOI

Ideguchi H. Effects of abnormal Hb on red cell membranes. Rinsho Byori. 1999;47:232–237. PubMed

Sugawara Y., Hayashi Y., Shigemasa Y., Abe Y., Ohgushi I., Ueno E., Shimamoto F. Molecular Biosensing Mechanisms in the Spleen for the Removal of Aged and Damaged Red Cells from the Blood Circulation. Sensors. 2010;10:7099–7121. doi: 10.3390/s100807099. PubMed DOI PMC

Ronquist G., Theodorsson E. Inherited, non-spherocytic haemolysis due to deficiency of glucose-6-phosphate dehydrogenase. Scand. J. Clin. Lab. Investig. 2007;67:105–111. doi: 10.1080/00365510601047910. PubMed DOI

Jacob H.S., Winterhalter K.H. The role of hemoglobin heme loss in Heinz body formation: Studies with a partially heme-deficient hemoglobin and with genetically unstable hemoglobins. J. Clin. Investig. 1970;49:2008–2016. doi: 10.1172/JCI106421. PubMed DOI PMC

Jacob H., Winterhalter K. Unstable Hemoglobins: The Role of Heme Loss in Heinz Body Formation. Proc. Natl. Acad. Sci. USA. 1970;65:697–701. doi: 10.1073/pnas.65.3.697. PubMed DOI PMC

Winterbourn C.C., Carrell R.W. Studies of Hemoglobin Denaturation and Heinz Body Formation in the Unstable Hemoglobins. J. Clin. Investig. 1974;54:678–689. doi: 10.1172/JCI107806. PubMed DOI PMC

Simmers R.N., Mulley J.C., Hyland V.J., Callen D.F., Sutherland G.R. Mapping the human alpha globin gene complex to 16p13.2—Pter. J. Med. Genet. 1987;24:761–766. doi: 10.1136/jmg.24.12.761. PubMed DOI PMC

Nicholls R.D., A Jonasson J., O McGee J., Patil S., Ionasescu V.V., Weatherall D.J., Higgs D.R. High resolution gene mapping of the human alpha globin locus. J. Med. Genet. 1987;24:39–46. doi: 10.1136/jmg.24.1.39. PubMed DOI PMC

Daniels R.J., Peden J.F., Lloyd C., Horsley S.W., Clark K., Tufarelli C., Kearney L., Buckle V.J., Doggett N.A., Flint J., et al. Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. Hum. Mol. Genet. 2001;10:339–352. doi: 10.1093/hmg/10.4.339. PubMed DOI

Higgs D.R., Wainscoat J.S., Flint J., Hill A.V., Thein S.L., Nicholls R.D., Teal H., Ayyub H., E Peto T., Falusi A.G. Analysis of the human alpha-globin gene cluster reveals a highly informative genetic locus. Proc. Natl. Acad. Sci. USA. 1986;83:5165–5169. doi: 10.1073/pnas.83.14.5165. PubMed DOI PMC

Coelho A., Picanço I., Seuanes F., Seixas M.T., Faustino P. Novel large deletions in the human α-globin gene cluster: Clarifying the HS-40 long-range regulatory role in the native chromosome environment. Blood Cells Mol. Dis. 2010;45:147–153. doi: 10.1016/j.bcmd.2010.05.010. PubMed DOI

Higgs D.R., Hill A.V.S., Nicholls R., Goodbourn S.E.Y., Ayyub H., Teal H., Clegg J.B., Weatherall D.J. Molecular Rearrangements of the Human α-Globin Gene Cluster. Ann. N. Y. Acad. Sci. 1985;445:45–56. doi: 10.1111/j.1749-6632.1985.tb17174.x. PubMed DOI

Hatton C.S., Wilkie A.O., Drysdale H.C., Wood W.G., Vickers M.A., Sharpe J., Ayyub H., Pretorius I.M., Buckle V.J., Higgs D.R. Alpha-thalassemia caused by a large (62 kb) deletion upstream of the human alpha globin gene cluster. Blood. 1990;76:221–227. doi: 10.1182/blood.V76.1.221.221. PubMed DOI

Steinberg M.H. A New Trans-Acting Modulator of Fetal Hemoglobin? Acta Haematol. 2018;140:112–113. doi: 10.1159/000492147. PubMed DOI

Cao A., Galanello R. Beta-thalassemia. Anesth. Analg. 2010;12:61–76. doi: 10.1097/GIM.0b013e3181cd68ed. PubMed DOI

Moleirinho A., Seixas S., Lopes A.M., Bento C., Prata M.J., Amorim A. Evolutionary Constraints in the β-Globin Cluster: The Signature of Purifying Selection at the δ-Globin (HBD) Locus and Its Role in Developmental Gene Regulation. Genome Biol. Evol. 2013;5:559–571. doi: 10.1093/gbe/evt029. PubMed DOI PMC

Lin C., Draper P., De Braekeleer M. High-resolution chromosomal localization of the β-gene of the human β-globin gene complex by in situ hybridization. Cytogenet. Genome Res. 1985;39:269–274. doi: 10.1159/000132156. PubMed DOI

Gusella J., Varsanyi-Breiner A., Kao F.T., Jones C., Puck T.T., Keys C., Orkin S., Housman D. Precise localization of human beta-globin gene complex on chromosome 11. Proc. Natl. Acad. Sci. USA. 1979;76:5239–5242. doi: 10.1073/pnas.76.10.5239. PubMed DOI PMC

Deisseroth A., Nienhuis A., Lawrence J., Giles R., Turner P., Ruddle F.H. Chromosomal localization of human β globin gene on human chromosome 11 in somatic cell hybrids. Proc. Natl. Acad. Sci. USA. 1978;75:1456–1460. doi: 10.1073/pnas.75.3.1456. PubMed DOI PMC

E Bauer D., Orkin S.H. Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr. Opin. Pediatr. 2011;23:1–8. doi: 10.1097/MOP.0b013e3283420fd0. PubMed DOI PMC

Manning J.M., Dumoulin A., Li X., Manning L.R. Normal and Abnormal Protein Subunit Interactions in Hemoglobins. J. Biol. Chem. 1998;273:19359–19362. doi: 10.1074/jbc.273.31.19359. PubMed DOI

Kidd R.D., Russell J.E., Watmough N.J., Baker E.N., Brittain T. The Role of β Chains in the Control of the Hemoglobin Oxygen Binding Function: Chimeric Human/Mouse Proteins, Structure, and Function. Biochemistry. 2001;40:15669–15675. doi: 10.1021/bi011329f. PubMed DOI

Yamaguchi T., Pang J., Reddy K.S., Surrey S., Adachi K. Role of β112 Cys (G14) in Homo-(β4) and Hetero-(α2β2) Tetramer Hemoglobin Formation. J. Biol. Chem. 1998;273:14179–14185. doi: 10.1074/jbc.273.23.14179. PubMed DOI

Borgstahl G.E., Rogers P.H., Arnone A. The 1·8 Å Structure of Carbonmonoxy-β4 Hemoglobin: Analysis of a Homotetramer with the R Quaternary Structure of Liganded α2β2 Hemoglobin. J. Mol. Biol. 1994;236:817–830. doi: 10.1006/jmbi.1994.1191. PubMed DOI

A Walder J., Chatterjee R., Steck T.L., Low P.S., Musso G.F., Kaiser E.T., Rogers P.H., Arnone A. The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. J. Biol. Chem. 1984;259:10238–10246. doi: 10.1016/S0021-9258(18)90956-7. PubMed DOI

Gell D., Kong Y., Eaton S.A., Weiss M.J., Mackay J.P. Biophysical Characterization of the α-Globin Binding Protein α-Hemoglobin Stabilizing Protein. J. Biol. Chem. 2002;277:40602–40609. doi: 10.1074/jbc.M206084200. PubMed DOI

Domingues-Hamdi E., Vasseur C., Fournier J.-B., Marden M.C., Wajcman H., Baudin-Creuza V. Role of α-Globin H Helix in the Building of Tetrameric Human Hemoglobin: Interaction with α-Hemoglobin Stabilizing Protein (AHSP) and Heme Molecule. PLoS ONE. 2014;9:e111395. doi: 10.1371/journal.pone.0111395. PubMed DOI PMC

Feng L., Gell D.A., Zhou S., Gu L., Kong Y., Li J., Hu M., Yan N., Lee C., Rich A.M., et al. Molecular Mechanism of AHSP-Mediated Stabilization of α-Hemoglobin. Cell. 2004;119:629–640. doi: 10.1016/j.cell.2004.11.025. PubMed DOI

Yu X., Kong Y., Dore L.C., Abdulmalik O., Katein A.M., Zhou S., Choi J.K., Gell D., Mackay J.P., Gow A.J., et al. An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis. J. Clin. Investig. 2007;117:1856–1865. doi: 10.1172/JCI31664. PubMed DOI PMC

Mollan T.L., Yu X., Weiss M.J., Olson J.S. The Role of Alpha-Hemoglobin Stabilizing Protein in Redox Chemistry, Denaturation, and Hemoglobin Assembly. Antioxid. Redox Signal. 2010;12:219–231. doi: 10.1089/ars.2009.2780. PubMed DOI PMC

Yu X., Mollan T.L., Butler A., Gow A.J., Olson J.S., Weiss M.J. Analysis of human α globin gene mutations that impair binding to the α hemoglobin stabilizing protein. Blood. 2009;113:5961–5969. doi: 10.1182/blood-2008-12-196030. PubMed DOI PMC

Voon H.P.J., Vadolas J. Controlling-globin: A review of-globin expression and its impact on -thalassemia. Haematologica. 2008;93:1868–1876. doi: 10.3324/haematol.13490. PubMed DOI

Ho H.-Y., Cheng M.-L., Chiu D.T.-Y. Glucose-6-phosphate dehydrogenase—From oxidative stress to cellular functions and degenerative diseases. Redox Rep. 2007;12:109–118. doi: 10.1179/135100007X200209. PubMed DOI

Arese P., Gallo V., Pantaleo A., Turrini F. Life and Death of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficient Erythrocytes—Role of Redox Stress and Band 3 Modifications. Transfus. Med. Hemotherapy. 2012;39:328–334. doi: 10.1159/000343123. PubMed DOI PMC

Janney S., Joist J., Fitch C. Excess release of ferriheme in G6PD-deficient erythrocytes: Possible cause of hemolysis and resistance to malaria. Blood. 1986;67:331–333. doi: 10.1182/blood.V67.2.331.331. PubMed DOI

Scott M.D., Zuo L., Lubin B.H., Chiu D.T. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood. 1991;77:2059–2064. doi: 10.1182/blood.V77.9.2059.2059. PubMed DOI

Nicol C.J., Zielenski J., Tsui L., Wells P.G. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J. 2000;14:111–127. doi: 10.1096/fasebj.14.1.111. PubMed DOI

Francis R.O., Jhang J.S., Pham H.P., Hod E.A., Zimring J.C., Spitalnik S.L. Glucose-6-phosphate dehydrogenase deficiency in transfusion medicine: The unknown risks. Vox Sang. 2013;105:271–282. doi: 10.1111/vox.12068. PubMed DOI PMC

Fibach E., Rachmilewitz E. The Role of Oxidative Stress in Hemolytic Anemia. Curr. Mol. Med. 2008;8:609–619. doi: 10.2174/156652408786241384. PubMed DOI

Haghpanah S., Hosseini-Bensenjan M., Zekavat O.R., Bordbar M., Karimi M., Ramzi M., Asmarian N. The Effect of N-Acetyl Cysteine and Vitamin E on Oxidative Status and Hemoglobin Level in Transfusion-Dependent Thalassemia Patients: A Systematic Review and Meta-Analysis. Iran. J. Blood Cancer. 2021;15:22–35. doi: 10.58209/ijbc.15.1.22. DOI

Halima W.M.A.B., Hannemann A., Rees D., Brewin J., Gibson J. The Effect of Antioxidants on the Properties of Red Blood Cells from P atients with Sickle Cell Anemia. Front. Physiol. 2019;10:976. PubMed PMC

Pallotta V., Gevi F., D’Alessandro A., Zolla L. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: A metabolomics overview. Blood Transfus. 2014;12:376–387. PubMed PMC

Delesderrier E., Curioni C., Omena J., Macedo C.R., Cople-Rodrigues C., Citelli M. Antioxidant nutrients and hemolysis in sickle cell disease. Clin. Chim. Acta. 2020;510:381–390. doi: 10.1016/j.cca.2020.07.020. PubMed DOI

Fibach E., Rachmilewitz E.A. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Ann. N. Y. Acad. Sci. 2010;1202:10–16. doi: 10.1111/j.1749-6632.2010.05577.x. PubMed DOI

Bonkovsky H.L., Guo J.T., Hou W., Li T., Narang T., Thapar M. Porphyrin and heme metabolism and the porphyrias. Compr. Physiol. 2013;3:365–401. PubMed

Bissell D.M., Lai J.C., Meister R.K., Blanc P.D. Role of Delta-aminolevulinic Acid in the Symptoms of Acute Porphyria. Am. J. Med. 2014;128:313–317. doi: 10.1016/j.amjmed.2014.10.026. PubMed DOI PMC

Watson C. Hematin and Porphyria. N. Engl. J. Med. 1975;293:605–607. doi: 10.1056/NEJM197509182931210. PubMed DOI

Tenhunen R., Mustajoki P. Acute Porphyria: Treatment with Heme. Semin. Liver Dis. 1998;18:53–55. doi: 10.1055/s-2007-1007140. PubMed DOI

Tian Q., Li T., Hou W., Zheng J., Schrum L.W., Bonkovsky H.L. Lon Peptidase 1 (LONP1)-dependent Breakdown of Mitochondrial 5-Aminolevulinic Acid Synthase Protein by Heme in Human Liver Cells. J. Biol. Chem. 2011;286:26424–26430. doi: 10.1074/jbc.M110.215772. PubMed DOI PMC

Hift R.J., Thunell S., Brun A. Drugs in porphyria: From observation to a modern algorithm-based system for the prediction of porphyrogenicity. Pharmacol. Ther. 2011;132:158–169. doi: 10.1016/j.pharmthera.2011.06.001. PubMed DOI

Gardner L., Smith S., Cox T. Biosynthesis of delta-aminolevulinic acid and the regulation of heme formation by immature erythroid cells in man. J. Biol. Chem. 1991;266:22010–22018. doi: 10.1016/S0021-9258(18)54738-4. PubMed DOI

Steinberg M.H. Hydroxyurea Treatment for Sickle Cell Disease. Sci. World J. 2002;2:1706–1728. doi: 10.1100/tsw.2002.295. PubMed DOI PMC

Steinberg M.H. Therapies to increase fetal hemoglobin in sickle cell disease. Curr. Hematol. Rep. 2003;2:95–101. PubMed

Fathallah H., Atweh G.F. Induction of Fetal Hemoglobin in the Treatment of Sickle Cell Disease. Hematol. Am. Soc. Hematol. Educ. Program. 2006;2006:58–62. doi: 10.1182/asheducation-2006.1.58. PubMed DOI

Cokic V.P., Smith R.D., Beleslin-Cokic B.B., Njoroge J.M., Miller J.L., Gladwin M.T., Schechter A.N. Hydroxyurea induces fetal hemoglobin by the nitric oxide–dependent activation of soluble guanylyl cyclase. J. Clin. Investig. 2003;111:231–239. doi: 10.1172/JCI200316672. PubMed DOI PMC

Rodgers G.P., Dover G.J., Noguchi C.T., Schechter A.N., Nienhuis A.W. Hematologic Responses of Patients with Sickle Cell Disease to Treatment with Hydroxyurea. N. Engl. J. Med. 1990;322:1037–1045. doi: 10.1056/NEJM199004123221504. PubMed DOI

Anderson N. Hydroxyurea therapy: Improving the lives of patients with sickle cell disease. Pediatr. Nurs. 2006;32:541–543. PubMed

Goldberg M.A., Brugnara C., Dover G.J., Schapira L., Charache S., Bunn H.F. Treatment of Sickle Cell Anemia with Hydroxyurea and Erythropoietin. N. Engl. J. Med. 1990;323:366–372. doi: 10.1056/NEJM199008093230602. PubMed DOI

Dover G., Samuel C. Hydroxyurea induction of fetal hemoglobin synthesis in sickle-cell disease. Semin. Oncol. 1992;19:5. PubMed

Grace R.F., Glenthøj A., Barcellini W., Verhovsek M., Rothman J.A., Morado M., Layton D.M., Andres O., Galactéros F., van Beers E.J., et al. Long-Term Hemoglobin Response and Reduction in Transfusion Burden Are Maintained in Patients with Pyruvate Kinase Deficiency Treated with Mitapivat. Blood. 2022;140:5313–5315. doi: 10.1182/blood-2022-169125. DOI

Grace R.F., Rose C., Layton D.M., Galactéros F., Barcellini W., Morton D.H., van Beers E.J., Yaish H., Ravindranath Y., Kuo K.H., et al. Safety and Efficacy of Mitapivat in Pyruvate Kinase Deficiency. N. Engl. J. Med. 2019;381:933–944. doi: 10.1056/NEJMoa1902678. PubMed DOI

Kuo K., Layton D., Lal A., Al-Samkari H., Bhatia J., Tong B., Lynch M., Uhlig K., Vichinsky E. Results from a phase 2 study of mitapivat in adults with non–transfusion-dependent alpha- or beta-thalassemia. Hematol. Transfus. Cell Ther. 2021;43:S28. doi: 10.1016/j.htct.2021.10.048. DOI

Kuo K.H., Layton D.M., Lal A., Al-Samkari H., Kosinski P.A., Tong B., Estepp J.H., Uhlig K., Vichinsky E.P. Mitapivat Improves Markers of Erythropoietic Activity in Long-Term Study of Adults with Alpha- or Beta-Non-Transfusion-Dependent Thalassemia. Blood. 2022;140((Suppl. S1)):2479–2480. doi: 10.1182/blood-2022-163493. DOI

Kuo K., Layton D., Lal A., Al-Samkari H., Bhatia J., Kosinski P., Tong B., Lynch M., Uhlig K., Vichinsky E. S116: Long-term efficacy and safety of the oral pyruvate kinase activator mitapivat in adults with non—Transfusion-dependent alpha- or beta-thalassemia. HemaSphere. 2022;6:8–9. doi: 10.1097/01.HS9.0000821432.34545.49. PubMed DOI

Xu J.Z., Conrey A., Frey I., Gwaabe E., A Menapace L., Tumburu L., Lundt M., Li Q., Glass K., Iyer V., et al. Mitapivat (AG-348) Demonstrates Safety, Tolerability, and Improvements in Anemia, Hemolysis, Oxygen Affinity, and Hemoglobin S Polymerization Kinetics in Adults with Sickle Cell Disease: A Phase 1 Dose Escalation Study. Blood. 2021;138((Suppl. S1)):10. doi: 10.1182/blood-2021-145398. DOI

Pilo F., Angelucci E. Mitapivat for sickle cell disease and thalassemia. Drugs Today. 2023;59:125–134. doi: 10.1358/dot.2023.59.3.3521880. PubMed DOI

Musallam K.M., Taher A.T., Cappellini M.D. Right in time: Mitapivat for the treatment of anemia in α- and β-thalassemia. Cell Rep. Med. 2022;3:100790. doi: 10.1016/j.xcrm.2022.100790. PubMed DOI PMC

Olubiyi O.O., Olagunju M.O., Strodel B. Rational Drug Design of Peptide-Based Therapies for Sickle Cell Disease. Molecules. 2019;24:4551. doi: 10.3390/molecules24244551. PubMed DOI PMC

Lee M.T., Ogu U.O. Sickle cell disease in the new era: Advances in drug treatment. Transfus. Apher. Sci. 2022;61:103555. doi: 10.1016/j.transci.2022.103555. PubMed DOI

Ali M.A., Ahmad A., Chaudry H., Aiman W., Aamir S., Anwar M.Y., Khan A. Efficacy and safety of recently approved drugs for sickle cell disease: A review of clinical trials. Exp. Hematol. 2020;92:11–18.e1. doi: 10.1016/j.exphem.2020.08.008. PubMed DOI PMC

Ataga K.I., Desai P.C. Advances in new drug therapies for the management of sickle cell disease. Expert Opin. Orphan Drugs. 2018;6:329–343. doi: 10.1080/21678707.2018.1471983. PubMed DOI PMC

Torres L., Conran N. Emerging pharmacotherapeutic approaches for the management of sickle cell disease. Expert Opin. Pharmacother. 2018;20:173–186. doi: 10.1080/14656566.2018.1548610. PubMed DOI

Carden M.A., Little J. Emerging disease-modifying therapies for sickle cell disease. Haematologica. 2019;104:1710–1719. doi: 10.3324/haematol.2018.207357. PubMed DOI PMC

Huang B., Ghatge M.S., Donkor A.K., Musayev F.N., Deshpande T.M., Al-Awadh M., Alhashimi R.T., Zhu H., Omar A.M., Telen M.J., et al. Design, Synthesis, and Investigation of Novel Nitric Oxide (NO)-Releasing Aromatic Aldehydes as Drug Candidates for the Treatment of Sickle Cell Disease. Molecules. 2022;27:6835. doi: 10.3390/molecules27206835. PubMed DOI PMC

Nakagawa A., Lui F.E., Wassaf D., Yefidoff-Freedman R., Casalena D., Palmer M.A., Meadows J., Mozzarelli A., Ronda L., Abdulmalik O., et al. Identification of a Small Molecule that Increases Hemoglobin Oxygen Affinity and Reduces SS Erythrocyte Sickling. ACS Chem. Biol. 2014;9:2318–2325. doi: 10.1021/cb500230b. PubMed DOI PMC

Kassa T., Strader M.B., Nakagawa A., Zapol W.M., Alayash A.I. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects. Metallomics. 2017;9:1260–1270. doi: 10.1039/C7MT00104E. PubMed DOI PMC

Kassa T., Wood F., Strader M.B., Alayash A.I. Antisickling Drugs Targeting βCys93 Reduce Iron Oxidation and Oxidative Changes in Sickle Cell Hemoglobin. Front. Physiol. 2019;10:931. doi: 10.3389/fphys.2019.00931. PubMed DOI PMC

Garel M.C., Domenget C., Caburi-Martin J., Prehu C., Galacteros F., Beuzard Y. Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. J. Biol. Chem. 1986;261:14704–14709. doi: 10.1016/S0021-9258(18)66928-5. PubMed DOI

Garel M., Domenget C., Galacteros F., Martincaburi J., Beuzard Y. Inhibition of erythrocyte sickling by thiol reagents. Mol. Pharmacol. 1984;26:559–565. PubMed

Abdulmalik O., Safo M.K., Chen Q., Yang J., Brugnara C., Ohene-Frempong K., Abraham D.J., Asakura T. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells†,‡. Br. J. Haematol. 2005;128:552–561. doi: 10.1111/j.1365-2141.2004.05332.x. PubMed DOI

Xu G.G., Pagare P.P., Ghatge M.S., Safo R.P., Gazi A., Chen Q., David T., Alabbas A.B., Musayev F.N., Venitz J., et al. Design, Synthesis, and Biological Evaluation of Ester and Ether Derivatives of Antisickling Agent 5-HMF for the Treatment of Sickle Cell Disease. Mol. Pharm. 2017;14:3499–3511. doi: 10.1021/acs.molpharmaceut.7b00553. PubMed DOI PMC

Stern W., Mathews D., McKew J., Shen X., Kato G.J. A Phase 1, First-in-Man, Dose-Response Study of Aes-103 (5-HMF), an Anti-Sickling, Allosteric Modifier of Hemoglobin Oxygen Affinity in Healthy Norman Volunteers. Blood. 2012;120:3210. doi: 10.1182/blood.V120.21.3210.3210. DOI

Lucas A., Ao-Ieong E.S.Y., Williams A.T., Jani V.P., Muller C.R., Yalcin O., Cabrales P. Increased Hemoglobin Oxygen Affinity With 5-Hydroxymethylfurfural Supports Cardiac Function During Severe Hypoxia. Front. Physiol. 2019;10:1350. doi: 10.3389/fphys.2019.01350. PubMed DOI PMC

Hannemann A., Cytlak U.M., Rees D.C., Tewari S., Gibson J.S. Effects of 5-hydroxymethyl-2-furfural on the volume and membrane permeability of red blood cells from patients with sickle cell disease. J. Physiol. 2014;592:4039–4049. doi: 10.1113/jphysiol.2014.277681. PubMed DOI PMC

Alhashimi R.T., Ghatge M.S., Donkor A.K., Deshpande T.M., Anabaraonye N., Alramadhani D., Danso-Danquah R., Huang B., Zhang Y., Musayev F.N., et al. Design, Synthesis, and Antisickling Investigation of a Nitric Oxide-Releasing Prodrug of 5HMF for the Treatment of Sickle Cell Disease. Biomolecules. 2022;12:696. doi: 10.3390/biom12050696. PubMed DOI PMC

Safo M.K., Abdulmalik O., Danso-Danquah R., Burnett J.C., Nokuri S., Joshi G.S., Musayev F.N., Asakura T., Abraham D.J. Structural Basis for the Potent Antisickling Effect of a Novel Class of Five-Membered Heterocyclic Aldehydic Compounds. J. Med. Chem. 2004;47:4665–4676. doi: 10.1021/jm0498001. PubMed DOI

Safo M.K., Kato G.J. Therapeutic Strategies to Alter the Oxygen Affinity of Sickle Hemoglobin. Hematol. Clin. N. Am. 2014;28:217–231. doi: 10.1016/j.hoc.2013.11.001. PubMed DOI PMC

Bonaventura C., Fago A., Henkens R., Crumbliss A.L. Critical Redox and Allosteric Aspects of Nitric Oxide Interactions with Hemoglobin. Antioxid. Redox Signal. 2004;6:979–991. PubMed

Gladwin M.T., Ognibene F.P., Pannell L.K., Nichols J.S., Pease-Fye M.E., Shelhamer J.H., Schechter A.N. Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl. Acad. Sci. USA. 2000;97:9943–9948. doi: 10.1073/pnas.180155397. PubMed DOI PMC

Sonveaux P., Lobysheva I.I., Feron O., McMahon T.J. Transport and Peripheral Bioactivities of Nitrogen Oxides Carried by Red Blood Cell Hemoglobin: Role in Oxygen Delivery. Physiology. 2007;22:97–112. doi: 10.1152/physiol.00042.2006. PubMed DOI

Stamler J.S., Jia L., Eu J.P., McMahon T.J., Demchenko I.T., Bonaventura J., Gernert K., Piantadosi C.A. Blood Flow Regulation by S-Nitrosohemoglobin in the Physiological Oxygen Gradient. Science. 1997;276:2034–2037. doi: 10.1126/science.276.5321.2034. PubMed DOI

Frehm E., Bonaventura J., Gow A. Serial Review: Biomedical Implications for Hemoglobin Interactions with Nitric Oxide Serial Review Editors: Mark T. Gladwin and Rakesh Patel S-nitrosohemoglobin: An allosteric mediator of no group function in m ammalian vasculature. Free Radic. Biol. Med. 2004;37:11 PubMed

Su H., Liu X., Du J., Deng X., Fan Y. The role of hemoglobin in nitric oxide transport in vascular system. Med. Nov. Technol. Devices. 2020;5:100034. doi: 10.1016/j.medntd.2020.100034. DOI

Lancaster J., Hutchings A., Kerby J.D., Patel R.P. The hemoglobin-nitric oxide axis: Implications for transfusion therapeutics. Transfus. Altern. Transfus. Med. 2007;9:273–280. doi: 10.1111/j.1778-428X.2007.00084.x. DOI

Omar A.M., Abdulmalik O., Ghatge M.S., Muhammad Y.A., Paredes S.D., El-Araby M.E., Safo M.K. An Investigation of Structure-Activity Relationships of Azolylacryloyl Derivatives Yielded Potent and Long-Acting Hemoglobin Modulators for Reversing Erythrocyte Sickling. Biomolecules. 2020;10:1508. doi: 10.3390/biom10111508. PubMed DOI PMC

Pagare P.P., Ghatge M.S., Musayev F.N., Deshpande T.M., Chen Q., Braxton C., Kim S., Venitz J., Zhang Y., Abdulmalik O., et al. Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease. Bioorg. Med. Chem. 2018;26:2530–2538. doi: 10.1016/j.bmc.2018.04.015. PubMed DOI PMC

Pagare P.P., Rastegar A., Abdulmalik O., Omar A.M., Zhang Y., Fleischman A., Safo M.K. Modulating hemoglobin allostery for treatment of sickle cell disease: Current progress and intellectual property. Expert Opin. Ther. Patents. 2021;32:115–130. doi: 10.1080/13543776.2022.1994945. PubMed DOI PMC

Gopalsamy A., Aulabaugh A.E., Barakat A., Beaumont K.C., Cabral S., Canterbury D.P., Casimiro-Garcia A., Chang J.S., Chen M.Z., Choi C., et al. PF-07059013: A Noncovalent Modulator of Hemoglobin for Treatment of Sickle Cell Disease. J. Med. Chem. 2020;64:326–342. doi: 10.1021/acs.jmedchem.0c01518. PubMed DOI

Saunthararajah Y. Targeting sickle cell disease root-cause pathophysiology with small molecules. Haematologica. 2019;104:1720–1730. doi: 10.3324/haematol.2018.207530. PubMed DOI PMC

Knee K.M., Jasuja R., Barakat A., Rao D., Wenzel Z., Sahasrabudhe P., Narula J., Jasti J., Chang J.S., Beaumont K., et al. A Novel Non-Covalent Modulator of Hemoglobin Improves Anemia and Reduces Sickling in a Mouse Model of Sickle Cell Disease. Blood. 2019;134((Suppl. S1)):207. doi: 10.1182/blood-2019-128270. DOI

Oder E., Safo M.K., Abdulmalik O., Kato G.J. New developments in anti-sickling agents: Can drugs directly prevent the polymerization of sickle haemoglobin in vivo? Br. J. Haematol. 2016;175:24–30. doi: 10.1111/bjh.14264. PubMed DOI PMC

Metcalf B., Chuang C., Dufu K., Patel M.P., Silva-Garcia A., Johnson C., Lu Q., Partridge J.R., Patskovska L., Patskovsky Y., et al. Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin. ACS Med. Chem. Lett. 2017;8:321–326. doi: 10.1021/acsmedchemlett.6b00491. PubMed DOI PMC

Kapoor S., Little J.A., Pecker L.H. Advances in the Treatment of Sickle Cell Disease. Mayo Clin. Proc. 2018;93:1810–1824. doi: 10.1016/j.mayocp.2018.08.001. PubMed DOI

Archer N., Galacteros F., Brugnara C. 2015 Clinical trials update in sickle cell anemia. Am. J. Hematol. 2015;90:934–950. doi: 10.1002/ajh.24116. PubMed DOI PMC

Deshpande T.M., Pagare P.P., Ghatge M.S., Chen Q., Musayev F.N., Venitz J., Zhang Y., Abdulmalik O., Safo M.K. Rational modification of vanillin derivatives to stereospecifically destabilize sickle hemoglobin polymer formation. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:956–964. doi: 10.1107/S2059798318009919. PubMed DOI PMC

Scipioni M., Kay G., Megson I.L., Lin P.K.T. Synthesis of novel vanillin derivatives: Novel multi-targeted scaffold ligands against Alzheimer’s disease. MedChemComm. 2019;10:764–777. doi: 10.1039/C9MD00048H. PubMed DOI PMC

Beaudry F., Ross A., Lema P.P., Vachon P. Pharmacokinetics of vanillin and its effects on mechanical hypersensitivity in a rat model of neuropathic pain. Phytother. Res. 2009;24:525–530. doi: 10.1002/ptr.2975. PubMed DOI

Ashraf Z., Rafiq M., Seo S.-Y., Babar M.M., Zaidi N.-U.S. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem. 2015;23:5870–5880. doi: 10.1016/j.bmc.2015.06.068. PubMed DOI

Abraham D., Mehanna A., Wireko F., Whitney J., Thomas R., Orringer E. Vanillin, a potential agent for the treatment of sickle cell anemia. Blood. 1991;77:1334–1341. doi: 10.1182/blood.V77.6.1334.1334. PubMed DOI

Abdulmalik O., Pagare P.P., Huang B., Xu G.G., Ghatge M.S., Xu X., Chen Q., Anabaraonye N., Musayev F.N., Omar A.M., et al. VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions. Sci. Rep. 2020;10:20277. doi: 10.1038/s41598-020-77171-2. PubMed DOI PMC

Pagare P.P., Ghatge M.S., Chen Q., Musayev F.N., Venitz J., Abdulmalik O., Zhang Y., Safo M.K. Exploration of Structure-Activity Relationship of Aromatic Aldehydes Bearing Pyridinylmethoxy-Methyl Esters as Novel Antisickling Agents. J. Med. Chem. 2020;63:14724–14739. doi: 10.1021/acs.jmedchem.0c01287. PubMed DOI PMC

Lee C., Maestre-Reyna M., Hsu K., Wang H., Liu C., Jeng W., Lin L., Wood R., Chou C., Yang J., et al. Crowning Proteins: Modulating the Protein Surface Properties using Crown Ethers. Angew. Chem. Int. Ed. Engl. 2014;53:13054–13058. doi: 10.1002/anie.201405664. PubMed DOI PMC

Leonard M., Dellacherie E. Acylation of human hemoglobin with polyoxyethylene derivatives. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 1984;791:219–225. doi: 10.1016/0167-4838(84)90012-8. PubMed DOI

Abraham D.J., Wireko F.C., Randad R.S., Poyart C., Kister J., Bohn B., Liard J.F., Kunert M.P. Allosteric modifiers of hemoglobin: 2-[4-[[(3,5-disubstituted anilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid derivatives that lower the oxygen affinity of hemoglobin in red cell suspensions, in whole blood, and in vivo in rats. Biochemistry. 1992;31:9141–9149. doi: 10.1021/bi00153a005. PubMed DOI

Sun K., D’alessandro A., Ahmed M.H., Zhang Y., Song A., Ko T.-P., Nemkov T., Reisz J.A., Wu H., Adebiyi M., et al. Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease. Sci. Rep. 2017;7:15281. doi: 10.1038/s41598-017-13667-8. PubMed DOI PMC

Kaca W., Roth R., Levin J. Hemoglobin, a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity. J. Biol. Chem. 1994;269:25078–25084. doi: 10.1016/S0021-9258(17)31501-6. PubMed DOI

Bahl N., Du R., Winarsih I., Ho B., Tucker-Kellogg L., Tidor B., Ding J.L. Delineation of Lipopolysaccharide (LPS)-binding Sites on Hemoglobin: From in silico predictions to biophysical characterization. J. Biol. Chem. 2011;286:37793–37803. doi: 10.1074/jbc.M111.245472. PubMed DOI PMC

Lechuga G.C., Souza-Silva F., Sacramento C.Q., Trugilho M.R.O., Valente R.H., Napoleão-Pêgo P., Dias S.S.G., Fintelman-Rodrigues N., Temerozo J.R., Carels N., et al. SARS-CoV-2 Proteins Bind to Hemoglobin and Its Metabolites. Int. J. Mol. Sci. 2021;22:9035. doi: 10.3390/ijms22169035. PubMed DOI PMC

Fischer S., Nagel R.L., Bookchin R.M., Roth E.F., Tellez-Nagel I. The binding of hemoglobin to membranes of normal and sickle erythrocytes. Biochim. Biophys. Acta (BBA) Biomembr. 1975;375:422–433. doi: 10.1016/0005-2736(75)90357-0. PubMed DOI

Shaklai N., Yguerabide J., Ranney H.M. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry. 1977;16:5585–5592. doi: 10.1021/bi00644a031. PubMed DOI

Yenamandra A., Marjoncu D. Voxelotor: A Hemoglobin S Polymerization Inhibitor for the Treatment of Sickle Cell Disease. J. Adv. Pract. Oncol. 2020;11:873–877. doi: 10.6004/jadpro.2020.11.8.7. PubMed DOI PMC

Singh J., Maggo S., Sadananden U.K. Voxelotor: Novel drug for sickle cell disease. Int. J. Basic Clin. Pharmacol. 2020;9:513–517. doi: 10.18203/2319-2003.ijbcp20200732. DOI

Han J., Saraf S.L., Gordeuk V.R. Systematic Review of Voxelotor: A First-in-Class Sickle Hemoglobin Polymerization Inhibitor for Management of Sickle Cell Disease. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020;40:525–534. doi: 10.1002/phar.2405. PubMed DOI

Howard J., Hemmaway C.J., Telfer P., Layton D.M., Porter J., Awogbade M., Mant T., Gretler D.D., Dufu K., Hutchaleelaha A., et al. A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease. Blood. 2019;133:1865–1875. doi: 10.1182/blood-2018-08-868893. PubMed DOI PMC

Hutchaleelaha A., Patel M., Washington C., Siu V., Allen E., Oksenberg D., Gretler D.D., Mant T., Lehrer-Graiwer J. Pharmacokinetics and pharmacodynamics of voxelotor (GBT440) in healthy adults and patients with sickle cell disease. Br. J. Clin. Pharmacol. 2019;85:1290–1302. doi: 10.1111/bcp.13896. PubMed DOI PMC

Vissa M., Vichinsky E. Voxelotor for the treatment of sickle cell disease. Expert Rev. Hematol. 2021;14:253–262. doi: 10.1080/17474086.2021.1893688. PubMed DOI

Vasseur C., Baudin-Creuza V. Role of alpha-hemoglobin molecular chaperone in the hemoglobin formation and clinical expression of some hemoglobinopathies. Transfus. Clin. Biol. 2015;22:49–57. doi: 10.1016/j.tracli.2015.01.002. PubMed DOI

Favero M.E., Costa F.F. Alpha-Hemoglobin-Stabilizing Protein: An Erythroid Molecular Chaperone. Biochem. Res. Int. 2011;2011:373859. doi: 10.1155/2011/373859. PubMed DOI PMC

Weiss M.J., Zhou S., Feng L., Gell D.A., Mackay J.P., Shi Y., Gow A.J. Role of Alpha Hemoglobin-Stabilizing Protein in Normal Erythropoiesis and β-Thalassemia. Ann. N. Y. Acad. Sci. 2005;1054:103–117. doi: 10.1196/annals.1345.013. PubMed DOI

Khandros E., Mollan T.L., Yu X., Wang X., Yao Y., D’Souza J., Gell D.A., Olson J.S., Weiss M.J. Insights into Hemoglobin Assembly through in Vivo Mutagenesis of α-Hemoglobin Stabilizing Protein. J. Biol. Chem. 2012;287:11325–11337. doi: 10.1074/jbc.M111.313205. PubMed DOI PMC

Eggleson K.K., Duffin K.L., Goldberg D.E. Identification and Characterization of Falcilysin, a Metallopeptidase Involved in Hemoglobin Catabolism within the Malaria Parasite Plasmodium falciparum. J. Biol. Chem. 1999;274:32411–32417. doi: 10.1074/jbc.274.45.32411. PubMed DOI

Christina E.M., Goldberg D. Plasmodium falciparum falcilysin: A metalloprotease with dual specificity. J. Biol. Chem. 2003;278:38022–38028. PubMed

Ralph S.A. Subcellular multitasking—Multiple destinations and roles for the Plasmodium falcilysin protease. Mol. Microbiol. 2007;63:309–313. doi: 10.1111/j.1365-2958.2006.05528.x. PubMed DOI

Ponpuak M., Klemba M., Park M., Gluzman I.Y., Lamppa G.K., Goldberg D.E. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol. Microbiol. 2006;63:314–334. doi: 10.1111/j.1365-2958.2006.05443.x. PubMed DOI

Chance J., Hannah F., Hernandez O., Istvan E., Armann A., Maslov N., Ruby A., Teodulo C., Huyen N., Brian V., et al. Development of piperazine-based hydroxamic acid inhibitors against fal cilysin, an essential malarial protease. Bioorg. Med. Chem. Lett. 2018;28:1846–1848. doi: 10.1016/j.bmcl.2018.04.010. PubMed DOI

Shen F., Zheng G., Setegne M., Tenglin K., Izada M., Xie H., Zhai L., Orkin S.H., Dassama L.M.K. A cell-permeant nano-body-based degrader that induces fetal hemoglobin. ACS Cent. Sci. 2022;8:1695–1703. doi: 10.1021/acscentsci.2c00998. PubMed DOI PMC

Maolu Y., Manizheh I., Karin T., Thibault V., Liting Z., Ge Z., Arthanari H., Laura M.K.D., Orkin S. Evolution of nanobodies specific for BCL11A. Proc. Natl. Acad. Sci. USA. 2022;120:e2218959120. PubMed PMC

Gülgün A., Andaç M., Denizli A., Duman M. Recognition of human hemoglobin with macromolecularly imprinted polyme ric nanoparticles using non-covalent interactions. J. Mol. Recognit. 2021;34:e2935. PubMed

Khakurel K.P., Žoldák G., Angelov B., Andreasson J. On the feasibility of time-resolved X-ray powder diffraction of macromolecules using laser-driven ultrafast X-ray sources. J. Appl. Crystallogr. 2024;57 Pt 4:1205–1211. doi: 10.1107/S1600576724005028. PubMed DOI PMC

Khakurel K.P., Nemergut M., Džupponová V., Kropielnicki K., Savko M., Žoldák G., Andreasson J. Design and fabrication of 3D-printed in situ crystallization plates for probing microcrystals in an external electric field. Pt 4J. Appl. Crystallogr. 2024;57:842–847. doi: 10.1107/S1600576724002140. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...