Hemoglobin Variants as Targets for Stabilizing Drugs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-23-0212
Agentúra na Podporu Výskumu a Vývoja
62410140
International Visegrad Fund
09I03-03-V03-00008
European Union's NextGenerationEU
PubMed
39860253
PubMed Central
PMC11767434
DOI
10.3390/molecules30020385
PII: molecules30020385
Knihovny.cz E-zdroje
- Klíčová slova
- 2,3-bisphosphoglycerate (2,3-BPG), Bohr effect, allosteric regulation, genetic variants, hemoglobin (Hb), oxygen affinity, oxygen-binding properties, protein engineering, sickle cell disease (SCD), thalassemia,
- MeSH
- genetická variace MeSH
- hemoglobinopatie genetika farmakoterapie MeSH
- hemoglobiny * chemie metabolismus genetika MeSH
- lidé MeSH
- ligandy MeSH
- stabilita proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- hemoglobiny * MeSH
- ligandy MeSH
Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide. Genetic variations in hemoglobin chains, such as those underlying sickle cell disease and thalassemias, present substantial clinical challenges. Here, we review the progress in research, including the use of allosteric modulators, pharmacological chaperones, and antioxidant treatments, which has begun to improve hemoglobin stability and oxygen affinity. According to UniProt (as of 7 August 2024), 819 variants of the α-hemoglobin subunit and 771 variants of the β-hemoglobin subunit have been documented, with over 116 classified as unstable. These data demonstrate the urgent need to develop variant-specific stabilizing options. Beyond small-molecule drugs/binders, novel protein-based strategies-such as engineered hemoglobin-binding proteins (including falcilysin, llama-derived nanobodies, and α-hemoglobin-stabilizing proteins)-offer promising new options. As our understanding of hemoglobin's structural and functional diversity grows, so does the potential for genotype-driven approaches. Continued research into hemoglobin stabilization and ligand-binding modification may yield more precise, effective treatments and pave the way toward effective strategies for hemoglobinopathies.
AURORA R and D s r o Mojmírova 12 040 01 Košice Slovakia
Extreme Light Infrastructure ERIC Za Radnici 835 25241 Dolni Brezany Czech Republic
Faculty of Science Pavol Jozef Šafárik University in Košice Park Angelinum 19 040 01 Košice Slovakia
Zobrazit více v PubMed
Perutz M.F. Stereochemical mechanism of oxygen transport by haemoglobin. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1980;208:135–162. PubMed
Bellelli A. Hemoglobin and Cooperativity: Experiments and Theories. Curr. Protein Pept. Sci. 2010;11:2–36. doi: 10.2174/138920310790274653. PubMed DOI
Riggs A.F. The Bohr Effect. Annu. Rev. Physiol. 1988;50:181–204. doi: 10.1146/annurev.ph.50.030188.001145. PubMed DOI
Tyuma I., Shimizu K. Different response to organic phosphates of human fetal and adult hemoglobins. Arch. Biochem. Biophys. 1969;129:404–405. doi: 10.1016/0003-9861(69)90192-1. PubMed DOI
Safo M.K., Ahmed M.H., Ghatge M.S., Boyiri T. Hemoglobin–ligand binding: Understanding Hb function and allostery on atomic level. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2011;1814:797–809. doi: 10.1016/j.bbapap.2011.02.013. PubMed DOI
Ahmed M.H., Ghatge M.S., Safo M.K. Hemoglobin: Structure, Function and Allostery. Subcell. Biochem. 2020;94:345–382. PubMed PMC
Randad R.S., Mahran M.A., Mehanna A.S., Abraham D.J. Allosteric modifiers of hemoglobin. 1. Design, synthesis, testing, and structure-allosteric activity relationship of novel hemoglobin oxygen affinity decreasing agents. J. Med. Chem. 1991;34:752–757. doi: 10.1021/jm00106a041. PubMed DOI
Ronda L., Bruno S., Abbruzzetti S., Viappiani C., Bettati S. Ligand reactivity and allosteric regulation of hemoglobin-based oxygen carriers. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2008;1784:1365–1377. doi: 10.1016/j.bbapap.2008.04.021. PubMed DOI
Ciaccio C., Coletta A., De Sanctis G., Marini S., Coletta M. Cooperativity and allostery in haemoglobin function. IUBMB Life. 2008;60:112–123. doi: 10.1002/iub.6. PubMed DOI
Maillett D.H., Simplaceanu V., Shen T.-J., Ho N.T., Olson J.S., Ho C. Interfacial and Distal-Heme Pocket Mutations Exhibit Additive Effects on the Structure and Function of Hemoglobin. Biochemistry. 2008;47:10551–10563. doi: 10.1021/bi800816v. PubMed DOI PMC
Brunori M., Miele A.E. Modulation of Allosteric Control and Evolution of Hemoglobin. Biomolecules. 2023;13:572. doi: 10.3390/biom13030572. PubMed DOI PMC
Storz J.F. Hemoglobin. Oxford University Press; Oxford, UK: 2018. Hemoglobin structure and allosteric mechanism; pp. 58–93.
Ferguson J.K.W., Roughton F.J.W. The chemical relationships and physiological importance of carbamino compounds of CO2 with hæmoglobin. J. Physiol. 1934;83:87–102. doi: 10.1113/jphysiol.1934.sp003213. PubMed DOI PMC
Chan N.-L., Kavanaugh J.S., Rogers P.H., Arnone A. Crystallographic Analysis of the Interaction of Nitric Oxide with Quaternary-T Human Hemoglobin. Biochemistry. 2003;43:118–132. doi: 10.1021/bi030172j. PubMed DOI
Allen B.W., Stamler J.S., Piantadosi C.A. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol. Med. 2009;15:452–460. doi: 10.1016/j.molmed.2009.08.002. PubMed DOI PMC
Hamasaki N., Rose Z.B. The Binding of Phosphorylated Red Cell Metabolites to Human Hemoglobin A. J. Biol. Chem. 1974;249:7896–7901. doi: 10.1016/S0021-9258(19)42050-4. PubMed DOI
Garby L., De Verdier C.-H. Affinity of Human Hemoglobin a to 2,3—Diphosphoglycerate. Effect of Hemoglobin Concentration and of pH. Scand. J. Clin. Lab. Investig. 1971;27:345–350. doi: 10.3109/00365517109080229. PubMed DOI
Beek G.G.M., Bruin S.H. The pH Dependence of the Binding of d-Glycerate 2,3-Bisphosphate to Deoxyhemoglobin and Oxyhemoglobin. Determination of the Number of Binding Sites in Oxyhemoglobin. Eur. J. Biochem. 1979;100:497–502. doi: 10.1111/j.1432-1033.1979.tb04194.x. PubMed DOI
Isaacks R.E. Advances in Experimental Medicine and Biology. Springer; New York, NY, USA: 1988. Can Metabolites Contribute in Regulating Blood Oxygen Affinity? pp. 137–143. PubMed
Mulquiney P.J., Kuchel P.W. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: Equations and parameter refinement. Biochem. J. 1999;342:581–596. doi: 10.1042/bj3420581. PubMed DOI PMC
Kayikci M., Venkatakrishnan A.J., Scott-Brown J., Ravarani C.N.J., Flock T., Babu M.M. Visualization and analysis of non-covalent contacts using the Protein Contacts Atlas. Nat. Struct. Mol. Biol. 2018;25:185–194. doi: 10.1038/s41594-017-0019-z. PubMed DOI PMC
López F.J.B., Centurion I.F., Díaz F.J.P., Pacheco C.M., Cortés B.I., Mendoza B.M.T., Flores-Jimenez J.A., Torre L.D.C.R.-D.L. Structural Effect of Gγ and Aγ Globin Chains in Fetal Hemoglobin Tetramer. Blood. 2023;142((Suppl. S1)):2291. doi: 10.1182/blood-2023-188988. DOI
Sharma S.K., Lechner R.B. Hematologic and coagulation disorders. In: Chestnut D.H., editor. Obstetric Anesthesia: Principles and Practice. 2nd ed. Mosby Inc.; St. Louis, MO, USA: 1999.
Manca L., Masala B. Disorders of the synthesis of human fetal hemoglobin. IUBMB Life. 2008;60:94–111. doi: 10.1002/iub.4. PubMed DOI
He L., Rockwood A.L., Agarwal A.M., Anderson L.C., Weisbrod C.R., Hendrickson C.L., Marshall A.G. Diagnosis of Hemoglobinopathy and β-Thalassemia by 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry of Hemoglobin from Blood. Clin. Chem. 2019;65:986–994. doi: 10.1373/clinchem.2018.295766. PubMed DOI
Kim J.-S., Kim H.S. Diagnosis of hemoglobinopathy and β-thalassemia by 21-Tesla Fourier transform ion cyclotron resonance mass spectrometry. Ann. Transl. Med. 2019;7((Suppl. S6)):S239. doi: 10.21037/atm.2019.07.97. PubMed DOI PMC
Carrocini G.C.d.S., Zamaro P.J.A., Bonini-Domingos C.R. What influences Hb fetal production in adulthood? Rev. Bras. Hematol. Hemoter. 2011;33:231–236. doi: 10.5581/1516-8484.20110059. PubMed DOI PMC
Hempe J.M., Craver R.D. Clinical Applications of Capillary Electrophoresis. Humana Press; Totowa, NJ, USA: 1999. Laboratory Diagnosis of Structural Hemoglobinopathies and Thalassemias by Capillary Isoelectric Focusing; pp. 81–98. PubMed
Little R.R., Roberts W.L. A Review of Variant Hemoglobins Interfering with Hemoglobin A1c Measurement. J. Diabetes Sci. Technol. 2009;3:446–451. doi: 10.1177/193229680900300307. PubMed DOI PMC
Fontana L., Alahouzou Z., Miccio A., Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes. 2023;14:577. doi: 10.3390/genes14030577. PubMed DOI PMC
Modell B. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 2008;86:480–487. doi: 10.2471/BLT.06.036673. PubMed DOI PMC
Turbpaiboon C., Wilairat P. Alpha-hemoglobin stabilizing protein: Molecular function and clinical correlation. Front. Biosci. 2010;15:1–11. doi: 10.2741/3601. PubMed DOI
Cardiero G., Musollino G., Prezioso R., Lacerra G. mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (−C)] and Sciacca [α1 cod109 (−C)] Biomedicines. 2021;9:1390. doi: 10.3390/biomedicines9101390. PubMed DOI PMC
Yang P., Chou S.-J., Li J., Hui W., Liu W., Sun N., Zhang R.Y., Zhu Y., Tsai M.-L., Lai H.I., et al. Supramolecular nanosubstrate–mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies. Sci. Adv. 2020;6:eabb7107. doi: 10.1126/sciadv.abb7107. PubMed DOI PMC
Nualkaew T., Sii-Felice K., Giorgi M., McColl B., Gouzil J., Glaser A., Voon H.P., Tee H.Y., Grigoriadis G., Svasti S., et al. Coordinated β-globin expression and α2-globin reduction in a multiplex lentiviral gene therapy vector for β-thalassemia. Mol. Ther. 2021;29:2841–2853. doi: 10.1016/j.ymthe.2021.04.037. PubMed DOI PMC
Kiem H.-P., I Arumugam P., Burtner C.R., Fox C.F., Beard B.C., Dexheimer P., E Adair J., Malik P. Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. Mol. Ther. Methods Clin. Dev. 2014;1:14055. doi: 10.1038/mtm.2014.55. PubMed DOI PMC
Thom C.S., Dickson C.F., Gell D.A., Weiss M.J. Hemoglobin Variants: Biochemical Properties and Clinical Correlates. Cold Spring Harb. Perspect. Med. 2013;3:a011858. doi: 10.1101/cshperspect.a011858. PubMed DOI PMC
Masson E., Zou W.-B., Génin E., Cooper D.N., Le Gac G., Fichou Y., Pu N., Rebours V., Férec C., Liao Z., et al. Expanding ACMG variant classification guidelines into a general framework. Hum. Genom. 2022;16:31. doi: 10.1186/s40246-022-00407-x. PubMed DOI PMC
Carss K., Goldstein D., Aggarwal V., Petrovski S. Variant Interpretation and Genomic Medicine. In: Balding D., Moltke I., Marioni J., editors. Handbook of Statistical Genomics. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2019. DOI
Chen J.-M., Masson E., Zou W.-B., Liao Z., Génin E., Cooper D.N., Férec C. Validation of the ACMG/AMP guidelines-based seven-category variant classification system. medRxiv. 2023 doi: 10.1101/2023.01.23.23284909. DOI
Walsh N., Cooper A., Dockery A., O’Byrne J.J. Variant reclassification and clinical implications. J. Med. Genet. 2024;61:207–211. doi: 10.1136/jmg-2023-109488. PubMed DOI
Sabath D.E. Molecular Diagnosis of Thalassemias and Hemoglobinopathies. Am. J. Clin. Pathol. 2017;148:6–15. doi: 10.1093/ajcp/aqx047. PubMed DOI
Kountouris P., Stephanou C., Lederer C.W., Traeger-Synodinos J., Bento C., Harteveld C.L., Fylaktou E., Koopmann T.T., Halim-Fikri H., Michailidou K., et al. Adapting the ACMG/AMP variant classification framework: A perspective from the ClinGen Hemoglobinopathy Variant Curation Expert Panel. Hum. Mutat. 2021;43:1089–1096. doi: 10.1002/humu.24280. PubMed DOI PMC
Turner S.A., Rao S.K., Morgan R.H., Vnencak-Jones C.L., Wiesner G.L. The impact of variant classification on the clinical management of hereditary cancer syndromes. Anesth. Analg. 2019;21:426–430. doi: 10.1038/s41436-018-0063-z. PubMed DOI
David S., Nora Syahirah S., Muhammad Nur Salam Bin H., Rajan R. The Blood Blues: A Review on Methemoglobinemia. J. Pharmacol. Pharmacother. 2018;9:5.
Boylston M., Beer D. Methemoglobinemia: A case study. Crit. Care Nurse. 2002;22:50–55. doi: 10.4037/ccn2002.22.4.50. PubMed DOI
Ashurst J., Wasson M. Methemoglobinemia: A systematic review of the pathophysiology, detection, and treatment. Delw. Med. J. 2011;83:203–208. PubMed
Nascimento T.S.D., Pereira R.O.L., de Mello H.L.D., Costa J. Metemoglobinemia: Do diagnóstico ao tratamento. Braz. J. Anesthesiol. 2008;58:651–664. doi: 10.1590/S0034-70942008000600011. DOI
Iolascon A., Bianchi P., Andolfo I., Russo R., Barcellini W., Fermo E., Toldi G., Ghirardello S., Rees D., Van Wijk R., et al. Recommendations for diagnosis and treatment of methemoglobinemia. Am. J. Hematol. 2021;96:1666–1678. doi: 10.1002/ajh.26340. PubMed DOI PMC
Ash-Bernal R., Wise R., Wright S.M. Acquired Methemoglobinemia: A retrospective series of 138 cases at 2 teaching hospitals. Medicine. 2004;83:265–273. doi: 10.1097/01.md.0000141096.00377.3f. PubMed DOI
Friedman N., Scolnik D., McMurray L., Bryan J. Acquired methemoglobinemia presenting to the pediatric emergency department: A clinical challenge. CJEM. 2020;22:673–677. doi: 10.1017/cem.2020.33. PubMed DOI
Karna B., Jha S.K., Al Zaabi E. Hemoglobin C Disease. [(accessed on 12 August 2024)];2023 Available online: https://www.ncbi.nlm.nih.gov/books/NBK559043/
Charache S., Conley C.L., Waugh D.F., Ugoretz R.J., Spurrell J.R. Pathogenesis of Hemolytic Anemia in Homozygous Hemoglobin C Disease. J. Clin. Investig. 1967;46:1795–1811. doi: 10.1172/JCI105670. PubMed DOI PMC
Schmidt K.L., Randolph T.R. Development of a Microscopic Method to Identify Hemoglobin C Conditions for Use in Developing Countries. Am. Soc. Clin. Lab. Sci. 2019;32:61–66. doi: 10.29074/ascls.2019001412. DOI
Ohiri C.D., Randolph T.R. Development of an easy, inexpensive, and precise method to identify Hemoglobin C for use in underdeveloped countries. FASEB J. 2016;30:61–66. doi: 10.1096/fasebj.30.1_supplement.1082.4. DOI
Verra F., Simpore J., Warimwe G.M., Tetteh K.K., Howard T., Osier F.H.A., Bancone G., Avellino P., Blot I., Fegan G., et al. Haemoglobin C and S Role in Acquired Immunity against Plasmodium falciparum Malaria. PLoS ONE. 2007;2:e978. doi: 10.1371/journal.pone.0000978. PubMed DOI PMC
Ghosh A., Basak J., Mukhopadhyay A. Coexistence of rare variant HbD Punjab [α2β2121(Glu→Gln)] and alpha 3.7 kb deletion in a young boy of Hindu family in West Bengal, India. Cell. Mol. Biol. Lett. 2015;20:736–742. doi: 10.1515/cmble-2015-0043. PubMed DOI
Italia K., Upadhye D., Dabke P., Kangane H., Colaco S., Sawant P., Nadkarni A., Gorakshakar A., Jain D., Italia Y., et al. Clinical and hematological presentation among Indian patients with common hemoglobin variants. Clin. Chim. Acta. 2014;431:46–51. doi: 10.1016/j.cca.2014.01.028. PubMed DOI
Oberoi S.M., Das R., Trehan A., Ahluwalia J., Bansal D.M., Malhotra P., Marwaha R.K.M. HbSD-Punjab. J. Pediatr. Hematol. 2014;36:e140–e144. doi: 10.1097/MPH.0000000000000049. PubMed DOI
Pandey S., Mishra R.M., Pandey S., Shah V., Saxena R. Molecular characterization of hemoglobin D Punjab traits and clinical-hematological profile of the patients. Sao Paulo Med. J. 2012;130:248–251. doi: 10.1590/S1516-31802012000400008. PubMed DOI PMC
A Petrenko A., Pivnik A.V., Kim P.P., Demidova E.Y., Surin V.L., O Abdullaev A., Sudarikov A.B., A Petrova N., A Maryina S. Coinheritance of HbD-Punjab/β+-thalassemia (IVSI+5 G-C) in patient with Gilbert’s syndrome. Ter. Arkh. 2018;90:105–109. doi: 10.26442/terarkh2018907105-109. PubMed DOI
Rieder R. Globin chain synthesis in HbD (Punjab)-beta-thalassemia. Blood. 1976;47:113–120. doi: 10.1182/blood.V47.1.113.113. PubMed DOI
Ohashi J., Naka I., Patarapotikul J., Hananantachai H., Brittenham G., Looareesuwan S., Clark A.G., Tokunaga K. Extended Linkage Disequilibrium Surrounding the Hemoglobin E Variant Due to Malarial Selection. Am. J. Hum. Genet. 2004;74:1198–1208. doi: 10.1086/421330. PubMed DOI PMC
Flatz G., Sanguansermsri T., Sengchanh S., Horst D., Horst J. The ‘Hot Spot’ of Hb E [β26(B8)Glu→Lys] in Southeast Asia: β-Globin Anomalies in the Lao Theung Population of Southern Laos. Hemoglobin. 2004;28:197–204. doi: 10.1081/HEM-120040334. PubMed DOI
Roche C.J., Malashkevich V., Balazs T.C., Dantsker D., Chen Q., Moreira J., Almo S.C., Friedman J.M., Hirsch R.E. Structural and Functional Studies Indicating Altered Redox Properties of Hemoglobin E. J. Biol. Chem. 2011;286:23452–23466. doi: 10.1074/jbc.M110.183186. PubMed DOI PMC
Strader M.B., Kassa T., Meng F., Wood F.B., Hirsch R.E., Friedman J.M., Alayash A.I. Oxidative instability of hemoglobin E (β26 Glu→Lys) is increased in the presence of free α subunits and reversed by α-hemoglobin stabilizing protein (AHSP): Relevance to HbE/β-thalassemia. Redox Biol. 2016;8:363–374. doi: 10.1016/j.redox.2016.03.004. PubMed DOI PMC
Jamsai D., Zaibak F., Vadolas J., Voullaire L., Fowler K.J., Gazeas S., Peters H., Fucharoen S., Williamson R., Ioannou P.A. A humanized BAC transgenic/knockout mouse model for HbE/β-thalassemia. Genomics. 2006;88:309–315. doi: 10.1016/j.ygeno.2006.03.009. PubMed DOI
Naka I., Ohashi J., Nuchnoi P., Hananantachai H., Looareesuwan S., Tokunaga K., Patarapotikul J. Lack of Association of the HbE Variant with Protection from Cerebral Malaria in Thailand. Biochem. Genet. 2008;46:708–711. doi: 10.1007/s10528-008-9185-3. PubMed DOI
Kidd R.D., Baker H.M., Mathews A.J., Brittain T., Baker E.N. Oligomerization and ligand binding in a homotetrameric hemoglobin: Two high-resolution crystal structures of hemoglobin Bart’s (γ4), a marker for α-thalassemia. Protein Sci. 2001;10:1739–1749. doi: 10.1110/ps.11701. PubMed DOI PMC
Pootrakul S., Wasi P., Na-Nakorn S. Haemoglobin Bart’s hydrops foetalis in Thailand. Ann. Hum. Genet. 1967;30:293–311. doi: 10.1111/j.1469-1809.1967.tb00031.x. PubMed DOI
Pembrey M.E., Weatherall D.J., Clegg J.B., Bunch C., Perrine R.P. Haemoglobin Bart’s in Saudi Arabia. Br. J. Haematol. 1975;29:221–234. doi: 10.1111/j.1365-2141.1975.tb01816.x. PubMed DOI
Czerwinski E., Czerwinski E., Risk M., Risk M., Matustik M., Matustik M. Crystallization and preliminary X-ray diffraction studies of methemoglobin Bart’s. J. Biol. Chem. 1981;256:13128–13129. doi: 10.1016/S0021-9258(18)43016-5. PubMed DOI
Papassotiriou I., Traeger-Synodinos J., Vlachou C., Karagiorga M., Metaxotou A., Kanavakis E., Stamoulakatou A. Rapid and Accurate Quantitation of Hb Bart’s and Hb H Using Weak Cation Exchange High Performance Liquid Chromatography: Correlation with the α-Thalassemia Genotype. Hemoglobin. 1999;23:203–211. doi: 10.3109/03630269909005700. PubMed DOI
Rugless M.J., Fisher C.A., Stephens A.D., Amos R.J., Mohammed T., Old J.M. Hb Bart’s in Cord Blood: An Accurate Indicator of α-Thalassemia. Hemoglobin. 2006;30:57–62. doi: 10.1080/03630260500454550. PubMed DOI
Sasazuki T., Isomoto A., Nakajima H. Circular dichroism and absorption spectra of haemoglobin Bart’s. J. Mol. Biol. 1972;65:365–369. doi: 10.1016/0022-2836(72)90287-2. PubMed DOI
Esan G.J.F. Haemoglobin Bart’s in Newborn Nigerians. Br. J. Haematol. 1972;22:73–86. doi: 10.1111/j.1365-2141.1972.tb08788.x. PubMed DOI
Gibson Q.H., Nagel R.L. Allosteric Transition and Ligand Binding in Hemoglobin Chesapeake. J. Biol. Chem. 1974;249:7255–7259. doi: 10.1016/S0021-9258(19)42099-1. PubMed DOI
Jones C.M., Charache S., Hathaway P. The effect of hemoglobin F-Chesapeake (α292 Arg.→Leuγ2) on fetal oxygen affinity and erythropoiesis. Pediatr. Res. 1979;13:851–853. doi: 10.1203/00006450-197907000-00011. PubMed DOI
Charache S. A manifestation of abnormal hemoglobins of man: Altered oxygen affinity. Hemoglobin Chesapeake: From the clinic to the laboratory, and back again. Ann. N. Y. Acad. Sci. 1974;241:449–455. doi: 10.1111/j.1749-6632.1974.tb21901.x. PubMed DOI
Wajcman H., Galactéros F. Hemoglobins with High Oxygen Affinity Leading to Erythrocytosis. New Variants and New Concepts. Hemoglobin. 2005;29:91–106. doi: 10.1081/HEM-58571. PubMed DOI
Harteveld C.L., Wijermans P.W., Arkesteijn S.G., Van Delft P., Kerkhoffs J.-L., Giordano P.C. Hb Lepore-Leiden: A New δ/β Rearrangement Associated with a β-Thalassemia Minor Phenotype. Hemoglobin. 2008;32:446–453. doi: 10.1080/03630260802173429. PubMed DOI
Pirastru M., Manca L., Trova S., Mereu P. Biochemical and Molecular Analysis of the Hb Lepore Boston Washington in a Syrian Homozygous Child. BioMed Res. Int. 2017;2017:1261972. doi: 10.1155/2017/1261972. PubMed DOI PMC
Mirabile E., Testa R., Consalvo C., Dickerhoff R., Schilirò G. Association of Hb S/Hb lepore and δβ-thalassemia/Hb lepore in Sicilian patients: Review of the presence of Hb lepore in Sicily. Eur. J. Haematol. 1995;55:126–130. doi: 10.1111/j.1600-0609.1995.tb01822.x. PubMed DOI
Seward D.P., Ware R.E., Kinney T.R. Hemoglobin sickle-lepore: Report of two siblings and review of the literature. Am. J. Hematol. 1993;44:192–195. doi: 10.1002/ajh.2830440310. PubMed DOI
Efremov G.D. Hemoglobins Lepore and Anti-Lepore. Hemoglobin. 1978;2:197–233. doi: 10.3109/03630267809007068. PubMed DOI
Chaibunruang A., Srivorakun H., Fucharoen S., Fucharoen G., Sae-Ung N., Sanchaisuriya K. Interactions of hemoglobin Lepore (deltabeta hybrid hemoglobin) with v arious hemoglobinopathies: A molecular and hematological characteristi cs and differential diagnosis. Blood Cells Mol. Dis. 2010;44:140–145. doi: 10.1016/j.bcmd.2009.11.008. PubMed DOI
Jiang F., Tang X.-W., Li J., Zhou J.-Y., Zuo L.-D., Li D.-Z. Hb Lepore-Hong Kong: First Report of a Novel δ/β-Globin Gene Fusion in a Chinese Family. Hemoglobin. 2021;45:220–224. doi: 10.1080/03630269.2021.1956945. PubMed DOI
Hunt D.M., Higgs D.R., Winichagoon P., Clegg J.B., Weatherall D.J. Haemoglobin Constant Spring has an unstable α chain messenger RNA. Br. J. Haematol. 1982;51:405–413. doi: 10.1111/j.1365-2141.1982.tb02796.x. PubMed DOI
Thonglairoam V., Fucharoen S., Tanphaichitr V.S., Pung-Amritt P., Embury S.H., Winichagoon P., Wasi P. Hemoglobin constant spring in bangkok: Molecular screening by selective enzymatic amplification of the α2-globin gene. Am. J. Hematol. 1991;38:277–280. doi: 10.1002/ajh.2830380405. PubMed DOI
Nguyen V.H., Sanchaisuriya K., Wongprachum K., Nguyen M.D., Phan T.T.H., Vo V.T., Sanchaisuriya P., Fucharoen S., Schelp F.P. Hemoglobin Constant Spring is markedly high in women of an ethnic minority group in Vietnam: A community-based survey and hematologic features. Blood Cells Mol. Dis. 2014;52:161–165. doi: 10.1016/j.bcmd.2013.12.002. PubMed DOI
Jomoui W., Fucharoen G., Sanchaisuriya K., Nguyen V.H., Fucharoen S. Hemoglobin Constant Spring among Southeast Asian Populations: Haplotypic Heterogeneities and Phylogenetic Analysis. PLoS ONE. 2015;10:e0145230. doi: 10.1371/journal.pone.0145230. PubMed DOI PMC
Charoenkwan P., Sirichotiyakul S., Chanprapaph P., Tongprasert F., Taweephol R., Sae-Tung R., Sanguansermsri T. Anemia and Hydrops in a Fetus with Homozygous Hemoglobin Constant Spring. J. Pediatr. Hematol. 2006;28:827–830. doi: 10.1097/01.mph.0000243662.56432.37. PubMed DOI
Kropp G., Fucharoen S., Embury S. Selective enzymatic amplification of alpha 2-globin DNA for detection of the hemoglobin Constant Spring mutation. Blood. 1989;73:1987–1992. doi: 10.1182/blood.V73.7.1987.1987. PubMed DOI
Roberts W.L. Hemoglobin Constant Spring Can Interfere with Glycated Hemoglobin Measurements by Boronate Affinity Chromatography. Clin. Chem. 2007;53:142–143. doi: 10.1373/clinchem.2007.078824. PubMed DOI
Zimmerman S.A., O’Branski E.E., Rosse W.F., Ware R.E. Hemoglobin S/O(Arab): Thirteen new cases and review of the lit-erature. Am. J. Hematol. 1999;60:279–284. doi: 10.1002/(SICI)1096-8652(199904)60:4<279::AID-AJH5>3.0.CO;2-2. PubMed DOI
Dror S. Clinical and hematological features of homozygous hemoglobin O-Arab [beta 121 Glu → Lys] Pediatr. Blood Cancer. 2012;60:506–507. doi: 10.1002/pbc.24414. PubMed DOI
Sangaré A., Sanogo I., Meité M., Ambofo Y., Abesopie V., Ségbéna A., Tolo A. Hemoglobin O Arab in Ivory Coast and western Africa. Med. Trop. (Mars) 1992;52:163–167. PubMed
El-Hazmi M., Lehmann H. Human Haemoglobins and Haemoglobinopathies in Arabia: Hb O Arab in Saudi Arabia. Acta Haematol. 1980;63:268–273. doi: 10.1159/000207414. PubMed DOI
Milner P.F., Miller C., Grey R., Seakins M., DeJong W.W., Went L.N. Hemoglobin O Arab in Four Negro Families and Its Interaction with Hemoglobin S and Hemoglobin C. N. Engl. J. Med. 1970;283:1417–1425. doi: 10.1056/NEJM197012242832601. PubMed DOI
Hafsia R., Gouider E., Ben Moussa S., Ben Salah N., Elborji W., Hafsia A. Hemoglobin O Arab: About 20 cases. Tunis. Med. 2007;85:637–640. PubMed
Merritt D., Jones R.T., Head C., Thibodeau S.N., Fairbanks V.F., Steinberg M.H., Coleman M.B., Rodgers G.P. HB Seal Rock [(α2)142 Term→glu, Codon 142 TAA→GAA]: An Extended α Chain Variant Associated with Anemia, Microcytosis, and α-Thalassemia-2 (-3.7 KB) Hemoglobin. 1997;21:331–344. doi: 10.3109/03630269709000666. PubMed DOI
Préhu C., Moradkhani K., Riou J., Bahuau M., Launay P., Martin N., Wajcman H., Goossens M., Galactéros F. Chronic hemolytic anemia due to novel -globin chain variants: Critical location of the mutation within the gene sequence for a dominant effect. Haematologica. 2009;94:1624–1625. doi: 10.3324/haematol.2009.012971. PubMed DOI PMC
Fattori A., Kimura E., Albuquerque D., Oliveira D., Costa F., Sonati M. Hb Indianapolis [β112 (G14) Cys→Arg] as the probable cause of moderate hemolytic anemia and renal damage in a Brazilian patient. Am. J. Hematol. 2007;82:672–675. doi: 10.1002/ajh.20860. PubMed DOI
Henderson S.J., Timbs A.T., McCarthy J., Gallienne A.E., Proven M., Rugless M.J., Lopez H., Eglinton J., Dziedzic D., Beardsall M., et al. Ten Years of Routineα- andβ-Globin Gene Sequencing in UK Hemoglobinopathy Referrals Reveals 60 Novel Mutations. Hemoglobin. 2016;40:75–84. doi: 10.3109/03630269.2015.1113990. PubMed DOI
Outeirino J., Casey R., White J., Lehmann H. Haemoglobin Madrid β115 (G17) Alanine→Proline: An Unstable Variant Associated with Haemolytic Anaemia. Acta Haematol. 1974;52:53–60. doi: 10.1159/000208220. PubMed DOI
Kim J.Y., Park S.S., Jung H.L., Keum D.H., Park H., Chang Y.H., Lee Y.J., Cho H.I. Hb Madrid [β115(G17)Ala→Pro] in a Korean Family with Chronic Hemolytic Anemia. Hemoglobin. 2000;24:133–138. doi: 10.3109/03630260009003432. PubMed DOI
Edison E.S., Shaji R.V., Devi S.G., Kumar S.S., Srivastava A., Chandy M. Hb Showa-Yakushiji [beta110(G12)Leu-->Pro] in four unrelated patients from west Bengal. Hemoglobin. 2005;29:19–25. doi: 10.1081/HEM-47613. PubMed DOI
Villegas A., Ropero P., Nogales A., González F.A., Mateo M., Mazo E., Rodrigo E., Arias M. Hb Santander [β34(B16)Val→Asp (GTC → GAC)]: A New Unstable Variant Found as a De Novo Mutation in a Spanish Patient. Hemoglobin. 2003;27:31–35. doi: 10.1081/HEM-120016378. PubMed DOI
Nakatsuji T., Miwa S., Ohba Y., Hattori Y., Miyaji T., Hino S., Matsumoto N. A New Unstable Hemoglobin, Hb Yokohama β31(B13)LEU → Pro, Causing Hemolytic Anemia. Hemoglobin. 1981;5:667–678. doi: 10.3109/03630268108991834. PubMed DOI
Huehns E.R., Hecht F., Yoshida A., Stamatoyannopoulos G., Hartman J., Motulsky A.G. Hemoglobin-Seattle (α2Aβ276 Glu): An Unstable Hemoglobin Causing Chronic Hemolytic Anemia. Blood. 1970;36:209–218. doi: 10.1182/blood.V36.2.209.209. PubMed DOI
Hoyer J.D., Baxter J.K., Moran A.M., Kubic K.S., Ehmann W.C. Two Unstable β Chain Variants Associated with β-Thalassemia: Hb Miami [β116(G18)His→Pro], and Hb Hershey [β70(E14)Ala→Gly], and a Second Unstable Hb Variant at β70: Hb Abington [β70(E14)Ala→Pro] Hemoglobin. 2005;29:241–248. doi: 10.1080/03630260500307626. PubMed DOI
Li W. Biophysical Basis of Hb-S Polymerization in Red Blood Cell Sickling. bioRxiv. 2019 doi: 10.1101/676957. DOI
Karen C. Sickle Cell Disease: A Genetic Disorder of Beta-Globin. Thalassemia and Other Hemolytic Anemias. IntechOpen; Rijeka, Croatia: 2018.
Ellsworth P., Sparkenbaugh E.M. Targeting the von Willebrand Factor–ADAMTS-13 axis in sickle cell disease. J. Thromb. Haemost. 2023;21:2–6. doi: 10.1016/j.jtha.2022.10.024. PubMed DOI PMC
Nader E., Romana M., Connes P. The Red Blood Cell—Inflammation Vicious Circle in Sickle Cell Disease. Front. Immunol. 2020;11:454. doi: 10.3389/fimmu.2020.00454. PubMed DOI PMC
Ashley-Koch A., Yang Q., Olney R.S. Sickle Hemoglobin (Hb S) Allele and Sickle Cell Disease: A HuGE Review. Am. J. Epidemiol. 2000;151:839–845. doi: 10.1093/oxfordjournals.aje.a010288. PubMed DOI
Al-Fatlawi A.C.Y. A Review on Sickle Cells Disease. Sci. J. Med. Res. 2019;3:146–148. doi: 10.37623/SJMR.2019.31207. DOI
Poli M.C., Orange J. CRISPR/Cas9β-globin Gene Targeting in Human Haematopoietic Stem Cells. Nature. 2017;140((Suppl. S3)):S226–S227.
Demirci S., Gudmundsdottir B., Li Q., Haro-Mora J.J., Nassehi T., Drysdale C., Yapundich M., Gamer J., Seifuddin F., Tisdale J.F., et al. βT87Q-Globin Gene Therapy Reduces Sickle Hemoglobin Production, Allowing for Ex Vivo Anti-sickling Activity in Human Erythroid Cells. Mol. Ther. Methods Clin. Dev. 2020;17:912–921. doi: 10.1016/j.omtm.2020.04.013. PubMed DOI PMC
De Simone G., Quattrocchi A., Mancini B., di Masi A., Nervi C., Ascenzi P. Thalassemias: From gene to therapy. Mol. Asp. Med. 2022;84:101028. doi: 10.1016/j.mam.2021.101028. PubMed DOI
Angastiniotis M., Lobitz S. Thalassemias: An Overview. Int. J. Neonatal Screen. 2019;5:16. doi: 10.3390/ijns5010016. PubMed DOI PMC
Weatherall D.J. Fortnightly review: The thalassaemias. BMJ. 1997;314:1675–1678. doi: 10.1136/bmj.314.7095.1675. PubMed DOI PMC
Muncie H., James C. Alpha and beta thalassemia. Am. Fam. Physician. 2009;80:339–344. PubMed
Vernimmen D. Globins, from Genes to Physiology and Diseases. Blood Cells Mol. Dis. 2018;70:1. doi: 10.1016/j.bcmd.2017.02.002. PubMed DOI
Aksu T., Unal S. Thalassemia. Trends Pediatr. 2021;2:1–7. doi: 10.5222/TP.2021.10820. DOI
Meri M.A., Al-Hakeem A.H., Al-Abeadi R.S. Overview on thalassemia: A review article. Med. Sci. J. Adv. Res. 2022;3:26–32. doi: 10.46966/msjar.v3i1.36. DOI
Reiss G.H., Ranney H.M., Shaklai N. Association of hemoglobin C with erythrocyte ghosts. J. Clin. Investig. 1982;70:946–952. doi: 10.1172/JCI110706. PubMed DOI PMC
Singh N., Seth T., Tyagi S. Review of Clinical and Hematological Profile of Hemoglobin D Cases in a Single Centre. J. Mar. Med. Soc. 2023;25((Suppl. S1)):S74–S79. doi: 10.4103/jmms.jmms_165_22. DOI
Mukherjee S., Das M., Basu K., Sengupta M., Karmakar S., Jha A.K., Bandopadhyay M. HbE Variants: An Experience from Tertiary Care Centre of Eastern India. Ann. Pathol. Lab. Med. 2020;7:A570–A575. doi: 10.21276/apalm.2906. DOI
Winterbourn C.C. Oxidative denaturation in congenital hemolytic anemias: The unstable hemoglobins. Semin. Hematol. 1990;27:41–50. PubMed
Taketa F., Huang Y., Libnoch J., Dessel B. Hemoglobin wood β97(FG4) His → Leu: A new high-oxygen-affinity hemoglobin associated with familial erythrocytosis. Biochim. Biophys. Acta (BBA) Protein Struct. 1975;400:348–353. doi: 10.1016/0005-2795(75)90190-7. PubMed DOI
Reed C.S., Hampson R., Gordon S., Jones R.T., Novy M.J., Brimhall B., Edwards M.J., Koler R.D. Erythrocytosis Secondary to Increased Oxygen Affinity of a Mutant Hemoglobin, Hemoglobin Kempsey. Blood. 1968;31:623–632. doi: 10.1182/blood.V31.5.623.623. PubMed DOI
Medri C., Méndez A., Hammerer-Lercher A., Rovó A., Angelillo-Scherrer A. Unstable hemoglobin Montreal II uncovered in an adult with unexplained hemolysis exacerbated by a presumed viral infection: A case report. J. Med. Case Rep. 2022;16:145. doi: 10.1186/s13256-022-03374-y. PubMed DOI PMC
Fallon J.A., Smith E.P., Schoch N., Paruk J.D., Adams E.A., Evers D.C., Jodice P.G., Perkins C., Schulte S., Hopkins W.A. Hematological indices of injury to lightly oiled birds from the Deepwater Horizon oil spill. Environ. Toxicol. Chem. 2018;37:451–461. doi: 10.1002/etc.3983. PubMed DOI
Harr K.E., Cunningham F.L., Pritsos C.A., Pritsos K.L., Muthumalage T., Dorr B.S., Horak K.E., Hanson-Dorr K.C., Dean K.M., Cacela D., et al. Weathered MC252 crude oil-induced anemia and abnormal erythroid morphology in double-crested cormorants (Phalacrocorax auritus) with light microscopic and ultrastructural description of Heinz bodies. Ecotoxicol. Environ. Saf. 2017;146:29–39. doi: 10.1016/j.ecoenv.2017.07.030. PubMed DOI
Sözen M., Karaaslan C., Öner R., Gümrük F., Özdemir M., Altay C., Gürgey A., Öner C. Severe hemolytic anemia associated with Hb Volga [β27(B9)Ala→Asp]: GCC→GAC at codon 27 in a Turkish family. Am. J. Hematol. 2004;76:378–382. doi: 10.1002/ajh.20128. PubMed DOI
Wali Y., Al Zadjali S., Elshinawy M., Beshlawi I., Fawaz N., AlKindi S., Rawas A., Alsinani S., Daar S., Krishnamoorthy R. Severity ranking of non-deletional alpha thalassemic alleles: Insights from an Omani family study. Eur. J. Haematol. 2011;86:507–511. doi: 10.1111/j.1600-0609.2011.01606.x. PubMed DOI
Gallagher P.G. Diagnosis and management of rare congenital nonimmune hemolytic disease. Hematol. Am. Soc. Hematol. Educ. Program. 2015;2015:392–399. doi: 10.1182/asheducation-2015.1.392. PubMed DOI
Fallon J.A., Hopkins W.A., Fox L. A practical quantification method for Heinz bodies in birds applicable to rapid response field scenarios. Environ. Toxicol. Chem. 2013;32:401–405. doi: 10.1002/etc.2058. PubMed DOI
Drouilly M., Jourdan L., Gérard D., Russello J., Bobée V., Audouy A., Phulpin A., Perrin J. Infantile pyknocytosis, a neonatal hemolytic anemia with Heinz bodies: A cohort study. Pediatr. Blood Cancer. 2024;71:e31078. doi: 10.1002/pbc.31078. PubMed DOI
Furdak P., Bartosz G., Stefaniuk I., Cieniek B., Bieszczad-Bedrejczuk E., Soszyński M., Sadowska-Bartosz I. Effect of Garlic Extract on the Erythrocyte as a Simple Model Cell. Int. J. Mol. Sci. 2024;25:5115. doi: 10.3390/ijms25105115. PubMed DOI PMC
Salgado B., Monteiro L., Rocha N. Allium species poisoning in dogs and cats. J. Venom. Anim. Toxins Incl. Trop. Dis. 2011;17:4–11. doi: 10.1590/S1678-91992011000100002. DOI
Ideguchi H. Effects of abnormal Hb on red cell membranes. Rinsho Byori. 1999;47:232–237. PubMed
Sugawara Y., Hayashi Y., Shigemasa Y., Abe Y., Ohgushi I., Ueno E., Shimamoto F. Molecular Biosensing Mechanisms in the Spleen for the Removal of Aged and Damaged Red Cells from the Blood Circulation. Sensors. 2010;10:7099–7121. doi: 10.3390/s100807099. PubMed DOI PMC
Ronquist G., Theodorsson E. Inherited, non-spherocytic haemolysis due to deficiency of glucose-6-phosphate dehydrogenase. Scand. J. Clin. Lab. Investig. 2007;67:105–111. doi: 10.1080/00365510601047910. PubMed DOI
Jacob H.S., Winterhalter K.H. The role of hemoglobin heme loss in Heinz body formation: Studies with a partially heme-deficient hemoglobin and with genetically unstable hemoglobins. J. Clin. Investig. 1970;49:2008–2016. doi: 10.1172/JCI106421. PubMed DOI PMC
Jacob H., Winterhalter K. Unstable Hemoglobins: The Role of Heme Loss in Heinz Body Formation. Proc. Natl. Acad. Sci. USA. 1970;65:697–701. doi: 10.1073/pnas.65.3.697. PubMed DOI PMC
Winterbourn C.C., Carrell R.W. Studies of Hemoglobin Denaturation and Heinz Body Formation in the Unstable Hemoglobins. J. Clin. Investig. 1974;54:678–689. doi: 10.1172/JCI107806. PubMed DOI PMC
Simmers R.N., Mulley J.C., Hyland V.J., Callen D.F., Sutherland G.R. Mapping the human alpha globin gene complex to 16p13.2—Pter. J. Med. Genet. 1987;24:761–766. doi: 10.1136/jmg.24.12.761. PubMed DOI PMC
Nicholls R.D., A Jonasson J., O McGee J., Patil S., Ionasescu V.V., Weatherall D.J., Higgs D.R. High resolution gene mapping of the human alpha globin locus. J. Med. Genet. 1987;24:39–46. doi: 10.1136/jmg.24.1.39. PubMed DOI PMC
Daniels R.J., Peden J.F., Lloyd C., Horsley S.W., Clark K., Tufarelli C., Kearney L., Buckle V.J., Doggett N.A., Flint J., et al. Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. Hum. Mol. Genet. 2001;10:339–352. doi: 10.1093/hmg/10.4.339. PubMed DOI
Higgs D.R., Wainscoat J.S., Flint J., Hill A.V., Thein S.L., Nicholls R.D., Teal H., Ayyub H., E Peto T., Falusi A.G. Analysis of the human alpha-globin gene cluster reveals a highly informative genetic locus. Proc. Natl. Acad. Sci. USA. 1986;83:5165–5169. doi: 10.1073/pnas.83.14.5165. PubMed DOI PMC
Coelho A., Picanço I., Seuanes F., Seixas M.T., Faustino P. Novel large deletions in the human α-globin gene cluster: Clarifying the HS-40 long-range regulatory role in the native chromosome environment. Blood Cells Mol. Dis. 2010;45:147–153. doi: 10.1016/j.bcmd.2010.05.010. PubMed DOI
Higgs D.R., Hill A.V.S., Nicholls R., Goodbourn S.E.Y., Ayyub H., Teal H., Clegg J.B., Weatherall D.J. Molecular Rearrangements of the Human α-Globin Gene Cluster. Ann. N. Y. Acad. Sci. 1985;445:45–56. doi: 10.1111/j.1749-6632.1985.tb17174.x. PubMed DOI
Hatton C.S., Wilkie A.O., Drysdale H.C., Wood W.G., Vickers M.A., Sharpe J., Ayyub H., Pretorius I.M., Buckle V.J., Higgs D.R. Alpha-thalassemia caused by a large (62 kb) deletion upstream of the human alpha globin gene cluster. Blood. 1990;76:221–227. doi: 10.1182/blood.V76.1.221.221. PubMed DOI
Steinberg M.H. A New Trans-Acting Modulator of Fetal Hemoglobin? Acta Haematol. 2018;140:112–113. doi: 10.1159/000492147. PubMed DOI
Cao A., Galanello R. Beta-thalassemia. Anesth. Analg. 2010;12:61–76. doi: 10.1097/GIM.0b013e3181cd68ed. PubMed DOI
Moleirinho A., Seixas S., Lopes A.M., Bento C., Prata M.J., Amorim A. Evolutionary Constraints in the β-Globin Cluster: The Signature of Purifying Selection at the δ-Globin (HBD) Locus and Its Role in Developmental Gene Regulation. Genome Biol. Evol. 2013;5:559–571. doi: 10.1093/gbe/evt029. PubMed DOI PMC
Lin C., Draper P., De Braekeleer M. High-resolution chromosomal localization of the β-gene of the human β-globin gene complex by in situ hybridization. Cytogenet. Genome Res. 1985;39:269–274. doi: 10.1159/000132156. PubMed DOI
Gusella J., Varsanyi-Breiner A., Kao F.T., Jones C., Puck T.T., Keys C., Orkin S., Housman D. Precise localization of human beta-globin gene complex on chromosome 11. Proc. Natl. Acad. Sci. USA. 1979;76:5239–5242. doi: 10.1073/pnas.76.10.5239. PubMed DOI PMC
Deisseroth A., Nienhuis A., Lawrence J., Giles R., Turner P., Ruddle F.H. Chromosomal localization of human β globin gene on human chromosome 11 in somatic cell hybrids. Proc. Natl. Acad. Sci. USA. 1978;75:1456–1460. doi: 10.1073/pnas.75.3.1456. PubMed DOI PMC
E Bauer D., Orkin S.H. Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr. Opin. Pediatr. 2011;23:1–8. doi: 10.1097/MOP.0b013e3283420fd0. PubMed DOI PMC
Manning J.M., Dumoulin A., Li X., Manning L.R. Normal and Abnormal Protein Subunit Interactions in Hemoglobins. J. Biol. Chem. 1998;273:19359–19362. doi: 10.1074/jbc.273.31.19359. PubMed DOI
Kidd R.D., Russell J.E., Watmough N.J., Baker E.N., Brittain T. The Role of β Chains in the Control of the Hemoglobin Oxygen Binding Function: Chimeric Human/Mouse Proteins, Structure, and Function. Biochemistry. 2001;40:15669–15675. doi: 10.1021/bi011329f. PubMed DOI
Yamaguchi T., Pang J., Reddy K.S., Surrey S., Adachi K. Role of β112 Cys (G14) in Homo-(β4) and Hetero-(α2β2) Tetramer Hemoglobin Formation. J. Biol. Chem. 1998;273:14179–14185. doi: 10.1074/jbc.273.23.14179. PubMed DOI
Borgstahl G.E., Rogers P.H., Arnone A. The 1·8 Å Structure of Carbonmonoxy-β4 Hemoglobin: Analysis of a Homotetramer with the R Quaternary Structure of Liganded α2β2 Hemoglobin. J. Mol. Biol. 1994;236:817–830. doi: 10.1006/jmbi.1994.1191. PubMed DOI
A Walder J., Chatterjee R., Steck T.L., Low P.S., Musso G.F., Kaiser E.T., Rogers P.H., Arnone A. The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. J. Biol. Chem. 1984;259:10238–10246. doi: 10.1016/S0021-9258(18)90956-7. PubMed DOI
Gell D., Kong Y., Eaton S.A., Weiss M.J., Mackay J.P. Biophysical Characterization of the α-Globin Binding Protein α-Hemoglobin Stabilizing Protein. J. Biol. Chem. 2002;277:40602–40609. doi: 10.1074/jbc.M206084200. PubMed DOI
Domingues-Hamdi E., Vasseur C., Fournier J.-B., Marden M.C., Wajcman H., Baudin-Creuza V. Role of α-Globin H Helix in the Building of Tetrameric Human Hemoglobin: Interaction with α-Hemoglobin Stabilizing Protein (AHSP) and Heme Molecule. PLoS ONE. 2014;9:e111395. doi: 10.1371/journal.pone.0111395. PubMed DOI PMC
Feng L., Gell D.A., Zhou S., Gu L., Kong Y., Li J., Hu M., Yan N., Lee C., Rich A.M., et al. Molecular Mechanism of AHSP-Mediated Stabilization of α-Hemoglobin. Cell. 2004;119:629–640. doi: 10.1016/j.cell.2004.11.025. PubMed DOI
Yu X., Kong Y., Dore L.C., Abdulmalik O., Katein A.M., Zhou S., Choi J.K., Gell D., Mackay J.P., Gow A.J., et al. An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis. J. Clin. Investig. 2007;117:1856–1865. doi: 10.1172/JCI31664. PubMed DOI PMC
Mollan T.L., Yu X., Weiss M.J., Olson J.S. The Role of Alpha-Hemoglobin Stabilizing Protein in Redox Chemistry, Denaturation, and Hemoglobin Assembly. Antioxid. Redox Signal. 2010;12:219–231. doi: 10.1089/ars.2009.2780. PubMed DOI PMC
Yu X., Mollan T.L., Butler A., Gow A.J., Olson J.S., Weiss M.J. Analysis of human α globin gene mutations that impair binding to the α hemoglobin stabilizing protein. Blood. 2009;113:5961–5969. doi: 10.1182/blood-2008-12-196030. PubMed DOI PMC
Voon H.P.J., Vadolas J. Controlling-globin: A review of-globin expression and its impact on -thalassemia. Haematologica. 2008;93:1868–1876. doi: 10.3324/haematol.13490. PubMed DOI
Ho H.-Y., Cheng M.-L., Chiu D.T.-Y. Glucose-6-phosphate dehydrogenase—From oxidative stress to cellular functions and degenerative diseases. Redox Rep. 2007;12:109–118. doi: 10.1179/135100007X200209. PubMed DOI
Arese P., Gallo V., Pantaleo A., Turrini F. Life and Death of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficient Erythrocytes—Role of Redox Stress and Band 3 Modifications. Transfus. Med. Hemotherapy. 2012;39:328–334. doi: 10.1159/000343123. PubMed DOI PMC
Janney S., Joist J., Fitch C. Excess release of ferriheme in G6PD-deficient erythrocytes: Possible cause of hemolysis and resistance to malaria. Blood. 1986;67:331–333. doi: 10.1182/blood.V67.2.331.331. PubMed DOI
Scott M.D., Zuo L., Lubin B.H., Chiu D.T. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood. 1991;77:2059–2064. doi: 10.1182/blood.V77.9.2059.2059. PubMed DOI
Nicol C.J., Zielenski J., Tsui L., Wells P.G. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J. 2000;14:111–127. doi: 10.1096/fasebj.14.1.111. PubMed DOI
Francis R.O., Jhang J.S., Pham H.P., Hod E.A., Zimring J.C., Spitalnik S.L. Glucose-6-phosphate dehydrogenase deficiency in transfusion medicine: The unknown risks. Vox Sang. 2013;105:271–282. doi: 10.1111/vox.12068. PubMed DOI PMC
Fibach E., Rachmilewitz E. The Role of Oxidative Stress in Hemolytic Anemia. Curr. Mol. Med. 2008;8:609–619. doi: 10.2174/156652408786241384. PubMed DOI
Haghpanah S., Hosseini-Bensenjan M., Zekavat O.R., Bordbar M., Karimi M., Ramzi M., Asmarian N. The Effect of N-Acetyl Cysteine and Vitamin E on Oxidative Status and Hemoglobin Level in Transfusion-Dependent Thalassemia Patients: A Systematic Review and Meta-Analysis. Iran. J. Blood Cancer. 2021;15:22–35. doi: 10.58209/ijbc.15.1.22. DOI
Halima W.M.A.B., Hannemann A., Rees D., Brewin J., Gibson J. The Effect of Antioxidants on the Properties of Red Blood Cells from P atients with Sickle Cell Anemia. Front. Physiol. 2019;10:976. PubMed PMC
Pallotta V., Gevi F., D’Alessandro A., Zolla L. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: A metabolomics overview. Blood Transfus. 2014;12:376–387. PubMed PMC
Delesderrier E., Curioni C., Omena J., Macedo C.R., Cople-Rodrigues C., Citelli M. Antioxidant nutrients and hemolysis in sickle cell disease. Clin. Chim. Acta. 2020;510:381–390. doi: 10.1016/j.cca.2020.07.020. PubMed DOI
Fibach E., Rachmilewitz E.A. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Ann. N. Y. Acad. Sci. 2010;1202:10–16. doi: 10.1111/j.1749-6632.2010.05577.x. PubMed DOI
Bonkovsky H.L., Guo J.T., Hou W., Li T., Narang T., Thapar M. Porphyrin and heme metabolism and the porphyrias. Compr. Physiol. 2013;3:365–401. PubMed
Bissell D.M., Lai J.C., Meister R.K., Blanc P.D. Role of Delta-aminolevulinic Acid in the Symptoms of Acute Porphyria. Am. J. Med. 2014;128:313–317. doi: 10.1016/j.amjmed.2014.10.026. PubMed DOI PMC
Watson C. Hematin and Porphyria. N. Engl. J. Med. 1975;293:605–607. doi: 10.1056/NEJM197509182931210. PubMed DOI
Tenhunen R., Mustajoki P. Acute Porphyria: Treatment with Heme. Semin. Liver Dis. 1998;18:53–55. doi: 10.1055/s-2007-1007140. PubMed DOI
Tian Q., Li T., Hou W., Zheng J., Schrum L.W., Bonkovsky H.L. Lon Peptidase 1 (LONP1)-dependent Breakdown of Mitochondrial 5-Aminolevulinic Acid Synthase Protein by Heme in Human Liver Cells. J. Biol. Chem. 2011;286:26424–26430. doi: 10.1074/jbc.M110.215772. PubMed DOI PMC
Hift R.J., Thunell S., Brun A. Drugs in porphyria: From observation to a modern algorithm-based system for the prediction of porphyrogenicity. Pharmacol. Ther. 2011;132:158–169. doi: 10.1016/j.pharmthera.2011.06.001. PubMed DOI
Gardner L., Smith S., Cox T. Biosynthesis of delta-aminolevulinic acid and the regulation of heme formation by immature erythroid cells in man. J. Biol. Chem. 1991;266:22010–22018. doi: 10.1016/S0021-9258(18)54738-4. PubMed DOI
Steinberg M.H. Hydroxyurea Treatment for Sickle Cell Disease. Sci. World J. 2002;2:1706–1728. doi: 10.1100/tsw.2002.295. PubMed DOI PMC
Steinberg M.H. Therapies to increase fetal hemoglobin in sickle cell disease. Curr. Hematol. Rep. 2003;2:95–101. PubMed
Fathallah H., Atweh G.F. Induction of Fetal Hemoglobin in the Treatment of Sickle Cell Disease. Hematol. Am. Soc. Hematol. Educ. Program. 2006;2006:58–62. doi: 10.1182/asheducation-2006.1.58. PubMed DOI
Cokic V.P., Smith R.D., Beleslin-Cokic B.B., Njoroge J.M., Miller J.L., Gladwin M.T., Schechter A.N. Hydroxyurea induces fetal hemoglobin by the nitric oxide–dependent activation of soluble guanylyl cyclase. J. Clin. Investig. 2003;111:231–239. doi: 10.1172/JCI200316672. PubMed DOI PMC
Rodgers G.P., Dover G.J., Noguchi C.T., Schechter A.N., Nienhuis A.W. Hematologic Responses of Patients with Sickle Cell Disease to Treatment with Hydroxyurea. N. Engl. J. Med. 1990;322:1037–1045. doi: 10.1056/NEJM199004123221504. PubMed DOI
Anderson N. Hydroxyurea therapy: Improving the lives of patients with sickle cell disease. Pediatr. Nurs. 2006;32:541–543. PubMed
Goldberg M.A., Brugnara C., Dover G.J., Schapira L., Charache S., Bunn H.F. Treatment of Sickle Cell Anemia with Hydroxyurea and Erythropoietin. N. Engl. J. Med. 1990;323:366–372. doi: 10.1056/NEJM199008093230602. PubMed DOI
Dover G., Samuel C. Hydroxyurea induction of fetal hemoglobin synthesis in sickle-cell disease. Semin. Oncol. 1992;19:5. PubMed
Grace R.F., Glenthøj A., Barcellini W., Verhovsek M., Rothman J.A., Morado M., Layton D.M., Andres O., Galactéros F., van Beers E.J., et al. Long-Term Hemoglobin Response and Reduction in Transfusion Burden Are Maintained in Patients with Pyruvate Kinase Deficiency Treated with Mitapivat. Blood. 2022;140:5313–5315. doi: 10.1182/blood-2022-169125. DOI
Grace R.F., Rose C., Layton D.M., Galactéros F., Barcellini W., Morton D.H., van Beers E.J., Yaish H., Ravindranath Y., Kuo K.H., et al. Safety and Efficacy of Mitapivat in Pyruvate Kinase Deficiency. N. Engl. J. Med. 2019;381:933–944. doi: 10.1056/NEJMoa1902678. PubMed DOI
Kuo K., Layton D., Lal A., Al-Samkari H., Bhatia J., Tong B., Lynch M., Uhlig K., Vichinsky E. Results from a phase 2 study of mitapivat in adults with non–transfusion-dependent alpha- or beta-thalassemia. Hematol. Transfus. Cell Ther. 2021;43:S28. doi: 10.1016/j.htct.2021.10.048. DOI
Kuo K.H., Layton D.M., Lal A., Al-Samkari H., Kosinski P.A., Tong B., Estepp J.H., Uhlig K., Vichinsky E.P. Mitapivat Improves Markers of Erythropoietic Activity in Long-Term Study of Adults with Alpha- or Beta-Non-Transfusion-Dependent Thalassemia. Blood. 2022;140((Suppl. S1)):2479–2480. doi: 10.1182/blood-2022-163493. DOI
Kuo K., Layton D., Lal A., Al-Samkari H., Bhatia J., Kosinski P., Tong B., Lynch M., Uhlig K., Vichinsky E. S116: Long-term efficacy and safety of the oral pyruvate kinase activator mitapivat in adults with non—Transfusion-dependent alpha- or beta-thalassemia. HemaSphere. 2022;6:8–9. doi: 10.1097/01.HS9.0000821432.34545.49. PubMed DOI
Xu J.Z., Conrey A., Frey I., Gwaabe E., A Menapace L., Tumburu L., Lundt M., Li Q., Glass K., Iyer V., et al. Mitapivat (AG-348) Demonstrates Safety, Tolerability, and Improvements in Anemia, Hemolysis, Oxygen Affinity, and Hemoglobin S Polymerization Kinetics in Adults with Sickle Cell Disease: A Phase 1 Dose Escalation Study. Blood. 2021;138((Suppl. S1)):10. doi: 10.1182/blood-2021-145398. DOI
Pilo F., Angelucci E. Mitapivat for sickle cell disease and thalassemia. Drugs Today. 2023;59:125–134. doi: 10.1358/dot.2023.59.3.3521880. PubMed DOI
Musallam K.M., Taher A.T., Cappellini M.D. Right in time: Mitapivat for the treatment of anemia in α- and β-thalassemia. Cell Rep. Med. 2022;3:100790. doi: 10.1016/j.xcrm.2022.100790. PubMed DOI PMC
Olubiyi O.O., Olagunju M.O., Strodel B. Rational Drug Design of Peptide-Based Therapies for Sickle Cell Disease. Molecules. 2019;24:4551. doi: 10.3390/molecules24244551. PubMed DOI PMC
Lee M.T., Ogu U.O. Sickle cell disease in the new era: Advances in drug treatment. Transfus. Apher. Sci. 2022;61:103555. doi: 10.1016/j.transci.2022.103555. PubMed DOI
Ali M.A., Ahmad A., Chaudry H., Aiman W., Aamir S., Anwar M.Y., Khan A. Efficacy and safety of recently approved drugs for sickle cell disease: A review of clinical trials. Exp. Hematol. 2020;92:11–18.e1. doi: 10.1016/j.exphem.2020.08.008. PubMed DOI PMC
Ataga K.I., Desai P.C. Advances in new drug therapies for the management of sickle cell disease. Expert Opin. Orphan Drugs. 2018;6:329–343. doi: 10.1080/21678707.2018.1471983. PubMed DOI PMC
Torres L., Conran N. Emerging pharmacotherapeutic approaches for the management of sickle cell disease. Expert Opin. Pharmacother. 2018;20:173–186. doi: 10.1080/14656566.2018.1548610. PubMed DOI
Carden M.A., Little J. Emerging disease-modifying therapies for sickle cell disease. Haematologica. 2019;104:1710–1719. doi: 10.3324/haematol.2018.207357. PubMed DOI PMC
Huang B., Ghatge M.S., Donkor A.K., Musayev F.N., Deshpande T.M., Al-Awadh M., Alhashimi R.T., Zhu H., Omar A.M., Telen M.J., et al. Design, Synthesis, and Investigation of Novel Nitric Oxide (NO)-Releasing Aromatic Aldehydes as Drug Candidates for the Treatment of Sickle Cell Disease. Molecules. 2022;27:6835. doi: 10.3390/molecules27206835. PubMed DOI PMC
Nakagawa A., Lui F.E., Wassaf D., Yefidoff-Freedman R., Casalena D., Palmer M.A., Meadows J., Mozzarelli A., Ronda L., Abdulmalik O., et al. Identification of a Small Molecule that Increases Hemoglobin Oxygen Affinity and Reduces SS Erythrocyte Sickling. ACS Chem. Biol. 2014;9:2318–2325. doi: 10.1021/cb500230b. PubMed DOI PMC
Kassa T., Strader M.B., Nakagawa A., Zapol W.M., Alayash A.I. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects. Metallomics. 2017;9:1260–1270. doi: 10.1039/C7MT00104E. PubMed DOI PMC
Kassa T., Wood F., Strader M.B., Alayash A.I. Antisickling Drugs Targeting βCys93 Reduce Iron Oxidation and Oxidative Changes in Sickle Cell Hemoglobin. Front. Physiol. 2019;10:931. doi: 10.3389/fphys.2019.00931. PubMed DOI PMC
Garel M.C., Domenget C., Caburi-Martin J., Prehu C., Galacteros F., Beuzard Y. Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. J. Biol. Chem. 1986;261:14704–14709. doi: 10.1016/S0021-9258(18)66928-5. PubMed DOI
Garel M., Domenget C., Galacteros F., Martincaburi J., Beuzard Y. Inhibition of erythrocyte sickling by thiol reagents. Mol. Pharmacol. 1984;26:559–565. PubMed
Abdulmalik O., Safo M.K., Chen Q., Yang J., Brugnara C., Ohene-Frempong K., Abraham D.J., Asakura T. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells†,‡. Br. J. Haematol. 2005;128:552–561. doi: 10.1111/j.1365-2141.2004.05332.x. PubMed DOI
Xu G.G., Pagare P.P., Ghatge M.S., Safo R.P., Gazi A., Chen Q., David T., Alabbas A.B., Musayev F.N., Venitz J., et al. Design, Synthesis, and Biological Evaluation of Ester and Ether Derivatives of Antisickling Agent 5-HMF for the Treatment of Sickle Cell Disease. Mol. Pharm. 2017;14:3499–3511. doi: 10.1021/acs.molpharmaceut.7b00553. PubMed DOI PMC
Stern W., Mathews D., McKew J., Shen X., Kato G.J. A Phase 1, First-in-Man, Dose-Response Study of Aes-103 (5-HMF), an Anti-Sickling, Allosteric Modifier of Hemoglobin Oxygen Affinity in Healthy Norman Volunteers. Blood. 2012;120:3210. doi: 10.1182/blood.V120.21.3210.3210. DOI
Lucas A., Ao-Ieong E.S.Y., Williams A.T., Jani V.P., Muller C.R., Yalcin O., Cabrales P. Increased Hemoglobin Oxygen Affinity With 5-Hydroxymethylfurfural Supports Cardiac Function During Severe Hypoxia. Front. Physiol. 2019;10:1350. doi: 10.3389/fphys.2019.01350. PubMed DOI PMC
Hannemann A., Cytlak U.M., Rees D.C., Tewari S., Gibson J.S. Effects of 5-hydroxymethyl-2-furfural on the volume and membrane permeability of red blood cells from patients with sickle cell disease. J. Physiol. 2014;592:4039–4049. doi: 10.1113/jphysiol.2014.277681. PubMed DOI PMC
Alhashimi R.T., Ghatge M.S., Donkor A.K., Deshpande T.M., Anabaraonye N., Alramadhani D., Danso-Danquah R., Huang B., Zhang Y., Musayev F.N., et al. Design, Synthesis, and Antisickling Investigation of a Nitric Oxide-Releasing Prodrug of 5HMF for the Treatment of Sickle Cell Disease. Biomolecules. 2022;12:696. doi: 10.3390/biom12050696. PubMed DOI PMC
Safo M.K., Abdulmalik O., Danso-Danquah R., Burnett J.C., Nokuri S., Joshi G.S., Musayev F.N., Asakura T., Abraham D.J. Structural Basis for the Potent Antisickling Effect of a Novel Class of Five-Membered Heterocyclic Aldehydic Compounds. J. Med. Chem. 2004;47:4665–4676. doi: 10.1021/jm0498001. PubMed DOI
Safo M.K., Kato G.J. Therapeutic Strategies to Alter the Oxygen Affinity of Sickle Hemoglobin. Hematol. Clin. N. Am. 2014;28:217–231. doi: 10.1016/j.hoc.2013.11.001. PubMed DOI PMC
Bonaventura C., Fago A., Henkens R., Crumbliss A.L. Critical Redox and Allosteric Aspects of Nitric Oxide Interactions with Hemoglobin. Antioxid. Redox Signal. 2004;6:979–991. PubMed
Gladwin M.T., Ognibene F.P., Pannell L.K., Nichols J.S., Pease-Fye M.E., Shelhamer J.H., Schechter A.N. Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl. Acad. Sci. USA. 2000;97:9943–9948. doi: 10.1073/pnas.180155397. PubMed DOI PMC
Sonveaux P., Lobysheva I.I., Feron O., McMahon T.J. Transport and Peripheral Bioactivities of Nitrogen Oxides Carried by Red Blood Cell Hemoglobin: Role in Oxygen Delivery. Physiology. 2007;22:97–112. doi: 10.1152/physiol.00042.2006. PubMed DOI
Stamler J.S., Jia L., Eu J.P., McMahon T.J., Demchenko I.T., Bonaventura J., Gernert K., Piantadosi C.A. Blood Flow Regulation by S-Nitrosohemoglobin in the Physiological Oxygen Gradient. Science. 1997;276:2034–2037. doi: 10.1126/science.276.5321.2034. PubMed DOI
Frehm E., Bonaventura J., Gow A. Serial Review: Biomedical Implications for Hemoglobin Interactions with Nitric Oxide Serial Review Editors: Mark T. Gladwin and Rakesh Patel S-nitrosohemoglobin: An allosteric mediator of no group function in m ammalian vasculature. Free Radic. Biol. Med. 2004;37:11 PubMed
Su H., Liu X., Du J., Deng X., Fan Y. The role of hemoglobin in nitric oxide transport in vascular system. Med. Nov. Technol. Devices. 2020;5:100034. doi: 10.1016/j.medntd.2020.100034. DOI
Lancaster J., Hutchings A., Kerby J.D., Patel R.P. The hemoglobin-nitric oxide axis: Implications for transfusion therapeutics. Transfus. Altern. Transfus. Med. 2007;9:273–280. doi: 10.1111/j.1778-428X.2007.00084.x. DOI
Omar A.M., Abdulmalik O., Ghatge M.S., Muhammad Y.A., Paredes S.D., El-Araby M.E., Safo M.K. An Investigation of Structure-Activity Relationships of Azolylacryloyl Derivatives Yielded Potent and Long-Acting Hemoglobin Modulators for Reversing Erythrocyte Sickling. Biomolecules. 2020;10:1508. doi: 10.3390/biom10111508. PubMed DOI PMC
Pagare P.P., Ghatge M.S., Musayev F.N., Deshpande T.M., Chen Q., Braxton C., Kim S., Venitz J., Zhang Y., Abdulmalik O., et al. Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease. Bioorg. Med. Chem. 2018;26:2530–2538. doi: 10.1016/j.bmc.2018.04.015. PubMed DOI PMC
Pagare P.P., Rastegar A., Abdulmalik O., Omar A.M., Zhang Y., Fleischman A., Safo M.K. Modulating hemoglobin allostery for treatment of sickle cell disease: Current progress and intellectual property. Expert Opin. Ther. Patents. 2021;32:115–130. doi: 10.1080/13543776.2022.1994945. PubMed DOI PMC
Gopalsamy A., Aulabaugh A.E., Barakat A., Beaumont K.C., Cabral S., Canterbury D.P., Casimiro-Garcia A., Chang J.S., Chen M.Z., Choi C., et al. PF-07059013: A Noncovalent Modulator of Hemoglobin for Treatment of Sickle Cell Disease. J. Med. Chem. 2020;64:326–342. doi: 10.1021/acs.jmedchem.0c01518. PubMed DOI
Saunthararajah Y. Targeting sickle cell disease root-cause pathophysiology with small molecules. Haematologica. 2019;104:1720–1730. doi: 10.3324/haematol.2018.207530. PubMed DOI PMC
Knee K.M., Jasuja R., Barakat A., Rao D., Wenzel Z., Sahasrabudhe P., Narula J., Jasti J., Chang J.S., Beaumont K., et al. A Novel Non-Covalent Modulator of Hemoglobin Improves Anemia and Reduces Sickling in a Mouse Model of Sickle Cell Disease. Blood. 2019;134((Suppl. S1)):207. doi: 10.1182/blood-2019-128270. DOI
Oder E., Safo M.K., Abdulmalik O., Kato G.J. New developments in anti-sickling agents: Can drugs directly prevent the polymerization of sickle haemoglobin in vivo? Br. J. Haematol. 2016;175:24–30. doi: 10.1111/bjh.14264. PubMed DOI PMC
Metcalf B., Chuang C., Dufu K., Patel M.P., Silva-Garcia A., Johnson C., Lu Q., Partridge J.R., Patskovska L., Patskovsky Y., et al. Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin. ACS Med. Chem. Lett. 2017;8:321–326. doi: 10.1021/acsmedchemlett.6b00491. PubMed DOI PMC
Kapoor S., Little J.A., Pecker L.H. Advances in the Treatment of Sickle Cell Disease. Mayo Clin. Proc. 2018;93:1810–1824. doi: 10.1016/j.mayocp.2018.08.001. PubMed DOI
Archer N., Galacteros F., Brugnara C. 2015 Clinical trials update in sickle cell anemia. Am. J. Hematol. 2015;90:934–950. doi: 10.1002/ajh.24116. PubMed DOI PMC
Deshpande T.M., Pagare P.P., Ghatge M.S., Chen Q., Musayev F.N., Venitz J., Zhang Y., Abdulmalik O., Safo M.K. Rational modification of vanillin derivatives to stereospecifically destabilize sickle hemoglobin polymer formation. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:956–964. doi: 10.1107/S2059798318009919. PubMed DOI PMC
Scipioni M., Kay G., Megson I.L., Lin P.K.T. Synthesis of novel vanillin derivatives: Novel multi-targeted scaffold ligands against Alzheimer’s disease. MedChemComm. 2019;10:764–777. doi: 10.1039/C9MD00048H. PubMed DOI PMC
Beaudry F., Ross A., Lema P.P., Vachon P. Pharmacokinetics of vanillin and its effects on mechanical hypersensitivity in a rat model of neuropathic pain. Phytother. Res. 2009;24:525–530. doi: 10.1002/ptr.2975. PubMed DOI
Ashraf Z., Rafiq M., Seo S.-Y., Babar M.M., Zaidi N.-U.S. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem. 2015;23:5870–5880. doi: 10.1016/j.bmc.2015.06.068. PubMed DOI
Abraham D., Mehanna A., Wireko F., Whitney J., Thomas R., Orringer E. Vanillin, a potential agent for the treatment of sickle cell anemia. Blood. 1991;77:1334–1341. doi: 10.1182/blood.V77.6.1334.1334. PubMed DOI
Abdulmalik O., Pagare P.P., Huang B., Xu G.G., Ghatge M.S., Xu X., Chen Q., Anabaraonye N., Musayev F.N., Omar A.M., et al. VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions. Sci. Rep. 2020;10:20277. doi: 10.1038/s41598-020-77171-2. PubMed DOI PMC
Pagare P.P., Ghatge M.S., Chen Q., Musayev F.N., Venitz J., Abdulmalik O., Zhang Y., Safo M.K. Exploration of Structure-Activity Relationship of Aromatic Aldehydes Bearing Pyridinylmethoxy-Methyl Esters as Novel Antisickling Agents. J. Med. Chem. 2020;63:14724–14739. doi: 10.1021/acs.jmedchem.0c01287. PubMed DOI PMC
Lee C., Maestre-Reyna M., Hsu K., Wang H., Liu C., Jeng W., Lin L., Wood R., Chou C., Yang J., et al. Crowning Proteins: Modulating the Protein Surface Properties using Crown Ethers. Angew. Chem. Int. Ed. Engl. 2014;53:13054–13058. doi: 10.1002/anie.201405664. PubMed DOI PMC
Leonard M., Dellacherie E. Acylation of human hemoglobin with polyoxyethylene derivatives. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 1984;791:219–225. doi: 10.1016/0167-4838(84)90012-8. PubMed DOI
Abraham D.J., Wireko F.C., Randad R.S., Poyart C., Kister J., Bohn B., Liard J.F., Kunert M.P. Allosteric modifiers of hemoglobin: 2-[4-[[(3,5-disubstituted anilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid derivatives that lower the oxygen affinity of hemoglobin in red cell suspensions, in whole blood, and in vivo in rats. Biochemistry. 1992;31:9141–9149. doi: 10.1021/bi00153a005. PubMed DOI
Sun K., D’alessandro A., Ahmed M.H., Zhang Y., Song A., Ko T.-P., Nemkov T., Reisz J.A., Wu H., Adebiyi M., et al. Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease. Sci. Rep. 2017;7:15281. doi: 10.1038/s41598-017-13667-8. PubMed DOI PMC
Kaca W., Roth R., Levin J. Hemoglobin, a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity. J. Biol. Chem. 1994;269:25078–25084. doi: 10.1016/S0021-9258(17)31501-6. PubMed DOI
Bahl N., Du R., Winarsih I., Ho B., Tucker-Kellogg L., Tidor B., Ding J.L. Delineation of Lipopolysaccharide (LPS)-binding Sites on Hemoglobin: From in silico predictions to biophysical characterization. J. Biol. Chem. 2011;286:37793–37803. doi: 10.1074/jbc.M111.245472. PubMed DOI PMC
Lechuga G.C., Souza-Silva F., Sacramento C.Q., Trugilho M.R.O., Valente R.H., Napoleão-Pêgo P., Dias S.S.G., Fintelman-Rodrigues N., Temerozo J.R., Carels N., et al. SARS-CoV-2 Proteins Bind to Hemoglobin and Its Metabolites. Int. J. Mol. Sci. 2021;22:9035. doi: 10.3390/ijms22169035. PubMed DOI PMC
Fischer S., Nagel R.L., Bookchin R.M., Roth E.F., Tellez-Nagel I. The binding of hemoglobin to membranes of normal and sickle erythrocytes. Biochim. Biophys. Acta (BBA) Biomembr. 1975;375:422–433. doi: 10.1016/0005-2736(75)90357-0. PubMed DOI
Shaklai N., Yguerabide J., Ranney H.M. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry. 1977;16:5585–5592. doi: 10.1021/bi00644a031. PubMed DOI
Yenamandra A., Marjoncu D. Voxelotor: A Hemoglobin S Polymerization Inhibitor for the Treatment of Sickle Cell Disease. J. Adv. Pract. Oncol. 2020;11:873–877. doi: 10.6004/jadpro.2020.11.8.7. PubMed DOI PMC
Singh J., Maggo S., Sadananden U.K. Voxelotor: Novel drug for sickle cell disease. Int. J. Basic Clin. Pharmacol. 2020;9:513–517. doi: 10.18203/2319-2003.ijbcp20200732. DOI
Han J., Saraf S.L., Gordeuk V.R. Systematic Review of Voxelotor: A First-in-Class Sickle Hemoglobin Polymerization Inhibitor for Management of Sickle Cell Disease. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020;40:525–534. doi: 10.1002/phar.2405. PubMed DOI
Howard J., Hemmaway C.J., Telfer P., Layton D.M., Porter J., Awogbade M., Mant T., Gretler D.D., Dufu K., Hutchaleelaha A., et al. A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease. Blood. 2019;133:1865–1875. doi: 10.1182/blood-2018-08-868893. PubMed DOI PMC
Hutchaleelaha A., Patel M., Washington C., Siu V., Allen E., Oksenberg D., Gretler D.D., Mant T., Lehrer-Graiwer J. Pharmacokinetics and pharmacodynamics of voxelotor (GBT440) in healthy adults and patients with sickle cell disease. Br. J. Clin. Pharmacol. 2019;85:1290–1302. doi: 10.1111/bcp.13896. PubMed DOI PMC
Vissa M., Vichinsky E. Voxelotor for the treatment of sickle cell disease. Expert Rev. Hematol. 2021;14:253–262. doi: 10.1080/17474086.2021.1893688. PubMed DOI
Vasseur C., Baudin-Creuza V. Role of alpha-hemoglobin molecular chaperone in the hemoglobin formation and clinical expression of some hemoglobinopathies. Transfus. Clin. Biol. 2015;22:49–57. doi: 10.1016/j.tracli.2015.01.002. PubMed DOI
Favero M.E., Costa F.F. Alpha-Hemoglobin-Stabilizing Protein: An Erythroid Molecular Chaperone. Biochem. Res. Int. 2011;2011:373859. doi: 10.1155/2011/373859. PubMed DOI PMC
Weiss M.J., Zhou S., Feng L., Gell D.A., Mackay J.P., Shi Y., Gow A.J. Role of Alpha Hemoglobin-Stabilizing Protein in Normal Erythropoiesis and β-Thalassemia. Ann. N. Y. Acad. Sci. 2005;1054:103–117. doi: 10.1196/annals.1345.013. PubMed DOI
Khandros E., Mollan T.L., Yu X., Wang X., Yao Y., D’Souza J., Gell D.A., Olson J.S., Weiss M.J. Insights into Hemoglobin Assembly through in Vivo Mutagenesis of α-Hemoglobin Stabilizing Protein. J. Biol. Chem. 2012;287:11325–11337. doi: 10.1074/jbc.M111.313205. PubMed DOI PMC
Eggleson K.K., Duffin K.L., Goldberg D.E. Identification and Characterization of Falcilysin, a Metallopeptidase Involved in Hemoglobin Catabolism within the Malaria Parasite Plasmodium falciparum. J. Biol. Chem. 1999;274:32411–32417. doi: 10.1074/jbc.274.45.32411. PubMed DOI
Christina E.M., Goldberg D. Plasmodium falciparum falcilysin: A metalloprotease with dual specificity. J. Biol. Chem. 2003;278:38022–38028. PubMed
Ralph S.A. Subcellular multitasking—Multiple destinations and roles for the Plasmodium falcilysin protease. Mol. Microbiol. 2007;63:309–313. doi: 10.1111/j.1365-2958.2006.05528.x. PubMed DOI
Ponpuak M., Klemba M., Park M., Gluzman I.Y., Lamppa G.K., Goldberg D.E. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol. Microbiol. 2006;63:314–334. doi: 10.1111/j.1365-2958.2006.05443.x. PubMed DOI
Chance J., Hannah F., Hernandez O., Istvan E., Armann A., Maslov N., Ruby A., Teodulo C., Huyen N., Brian V., et al. Development of piperazine-based hydroxamic acid inhibitors against fal cilysin, an essential malarial protease. Bioorg. Med. Chem. Lett. 2018;28:1846–1848. doi: 10.1016/j.bmcl.2018.04.010. PubMed DOI
Shen F., Zheng G., Setegne M., Tenglin K., Izada M., Xie H., Zhai L., Orkin S.H., Dassama L.M.K. A cell-permeant nano-body-based degrader that induces fetal hemoglobin. ACS Cent. Sci. 2022;8:1695–1703. doi: 10.1021/acscentsci.2c00998. PubMed DOI PMC
Maolu Y., Manizheh I., Karin T., Thibault V., Liting Z., Ge Z., Arthanari H., Laura M.K.D., Orkin S. Evolution of nanobodies specific for BCL11A. Proc. Natl. Acad. Sci. USA. 2022;120:e2218959120. PubMed PMC
Gülgün A., Andaç M., Denizli A., Duman M. Recognition of human hemoglobin with macromolecularly imprinted polyme ric nanoparticles using non-covalent interactions. J. Mol. Recognit. 2021;34:e2935. PubMed
Khakurel K.P., Žoldák G., Angelov B., Andreasson J. On the feasibility of time-resolved X-ray powder diffraction of macromolecules using laser-driven ultrafast X-ray sources. J. Appl. Crystallogr. 2024;57 Pt 4:1205–1211. doi: 10.1107/S1600576724005028. PubMed DOI PMC
Khakurel K.P., Nemergut M., Džupponová V., Kropielnicki K., Savko M., Žoldák G., Andreasson J. Design and fabrication of 3D-printed in situ crystallization plates for probing microcrystals in an external electric field. Pt 4J. Appl. Crystallogr. 2024;57:842–847. doi: 10.1107/S1600576724002140. PubMed DOI PMC