Direct Observation of Structural Phase Transformations during Phosphorene Formation on Cu(111)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39843400
PubMed Central
PMC11803912
DOI
10.1021/acsnano.4c11802
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, copper phosphide, growth mode, phase transformation, phosphorene,
- Publikační typ
- časopisecké články MeSH
Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111). We find that during the early stages of deposition phosphorus intermixes with Cu, resulting in copper phosphide structures. With the increasing surface concentration of phosphorus, the phosphide phase disappears, and a blue phosphorene layer forms, followed by the self-assembly of highly ordered phosphorus clusters that eventually grow into multilayer islands. We attribute the unexpected transformation of stable phosphide to a phosphorene layer to the presence of a large concentration of P2 dimers on the surface. Our results constitute direct evidence for a growth mode leading to a flat phosphorene layer via an intermediary phase, which could underpin the growth of other 2D materials on strongly interacting substrates.
Zobrazit více v PubMed
Zhang S.; Yang J.; Xu R.; Wang F.; Li W.; Ghufran M.; Zhang Y.-W.; Yu Z.; Zhang G.; Qin Q.; Lu Y. Extraordinary Photoluminescence And Strong Temperature/Angle-Dependent Raman Responses In Few-Layer Phosphorene. ACS Nano 2014, 8 (9), 9590–9596. 10.1021/nn503893j. PubMed DOI
Carvalho A.; Wang M.; Zhu X.; Rodin A. S.; Su H.; Neto A. H. C. Phosphorene: From Theory To Applications. Nat. Rev. Mater. 2016, 1 (11), 16061.10.1038/natrevmats.2016.61. DOI
Izquierdo N.; Myers J. C.; Seaton N. C. A.; Pandey S. K.; Campbell S. A. Thin-Film Deposition Of Surface Passivated Black Phosphorus. ACS Nano 2019, 13 (6), 7091–7099. 10.1021/acsnano.9b02385. PubMed DOI
Muzaffar M. U.; Wang X.-S.; Zhang S.; Cui P.; Zhang Z. Epitaxial Growth Of Black Phosphorene Enabled On Black-Phosphorene-Like Group Iv-Vi Substrates. Phys. Rev. B 2021, 104 (23), 23541510.1103/PhysRevB.104.235415. DOI
Zeng J.; Cui P.; Zhang Z. Half Layer By Half Layer Growth Of A Blue Phosphorene Monolayer On A Gan(001) Substrate. Phys. Rev. Lett. 2017, 118 (4), 04610110.1103/PhysRevLett.118.046101. PubMed DOI
Zhu Z.; Tománek D. Semiconducting Layered Blue Phosphorus: A Computational Study. Phys. Rev. Lett. 2014, 112 (17), 17680210.1103/PhysRevLett.112.176802. PubMed DOI
Gao J.; Zhang G.; Zhang Y.-W. The Critical Role Of Substrate In Stabilizing Phosphorene Nanoflake: A Theoretical Exploration. J. Am. Chem. Soc. 2016, 138 (14), 4763–4771. 10.1021/jacs.5b12472. PubMed DOI
Xu J.-P.; Zhang J.-Q.; Tian H.; Xu H.; Ho W.; Xie M. One-Dimensional Phosphorus Chain And Two-Dimensional Blue Phosphorene Grown On Au(111) By Molecular-Beam Epitaxy. Physical Review Materials 2017, 1 (6), 06100210.1103/PhysRevMaterials.1.061002. DOI
Zhang J. L.; Zhao S.; Han C.; Wang Z.; Zhong S.; Sun S.; Guo R.; Zhou X.; Gu C. D.; Yuan K. D.; Li Z.; Chen W. Epitaxial Growth Of Single Layer Blue Phosphorus: A New Phase Of Two-Dimensional Phosphorus. Nano Lett. 2016, 16 (8), 4903–4908. 10.1021/acs.nanolett.6b01459. PubMed DOI
Zhang J. L.; Zhao S.; Sun S.; Ding H.; Hu J.; Li Y.; Xu Q.; Yu X.; Telychko M.; Su J.; Zheng Y.; Lian X.; Ma Z.; Guo R.; Lu J.; Sun Z.; Zhu J.; Li Z.; Chen W. Synthesis Of Monolayer Blue Phosphorus Enabled By Silicon Intercalation. ACS Nano 2020, 14 (3), 3687–3695. 10.1021/acsnano.0c00822. PubMed DOI
Gu C.; Zhao S.; Zhang J. L.; Sun S.; Yuan K.; Hu Z.; Han C.; Ma Z.; Wang L.; Huo F.; Huang W.; Li Z.; Chen W. Growth Of Quasi-Free-Standing Single-Layer Blue Phosphorus On Tellurium Monolayer Functionalized Au(111). ACS Nano 2017, 11 (5), 4943–4949. 10.1021/acsnano.7b01575. PubMed DOI
Kaddar Y.; Zhang W.; Enriquez H.; Dappe Y. J.; Bendounan A.; Dujardin G.; Mounkachi O.; El kenz A.; Benyoussef A.; Kara A.; Oughaddou H. Dirac Fermions In Blue Phosphorene Monolayer. Adv. Funct. Mater. 2023, 33 (21), 221366410.1002/adfm.202213664. DOI
Song Y.-H.; Muzaffar M. U.; Wang Q.; Wang Y.; Jia Y.; Cui P.; Zhang W.; Wang X.-S.; Zhang Z. Realization Of Large-Area Ultraflat Chiral Blue Phosphorene. Nat. Commun. 2024, 15 (1), 1157.10.1038/s41467-024-45263-6. PubMed DOI PMC
Li X.; Magnuson C. W.; Venugopal A.; Tromp R. M.; Hannon J. B.; Vogel E. M.; Colombo L.; Ruoff R. S. Large-Area Graphene Single Crystals Grown By Low-Pressure Chemical Vapor Deposition Of Methane On Copper. J. Am. Chem. Soc. 2011, 133 (9), 2816–2819. 10.1021/ja109793s. PubMed DOI
Qiu L.; Dong J. C.; Ding F. Selective Growth Of Two-Dimensional Phosphorene On Catalyst Surface. Nanoscale 2018, 10 (5), 2255–2259. 10.1039/C7NR08507A. PubMed DOI
Zhao S.; Li Z. Blue Phosphorus Growth On Different Noble Metal Surfaces: From A 2D Alloy Network To An Extended Monolayer. J. Phys. Chem. C 2021, 125 (1), 675–679. 10.1021/acs.jpcc.0c10478. DOI
Yin Y.; Gladkikh V.; Li P.; Zhang L.; Yuan Q.; Ding F. Stabilities Of Isomers Of Phosphorus On Transition Metal Substrates. Chem. Mater. 2021, 33 (23), 9447–9453. 10.1021/acs.chemmater.1c03489. DOI
Zhao S.; Zhang J. L.; Chen W.; Li Z. Structure Of Blue Phosphorus Grown On Au(111) Surface Revisited. J. Phys. Chem. C 2020, 124 (3), 2024–2029. 10.1021/acs.jpcc.9b10511. DOI
Zhang W.; Enriquez H.; Zhang X.; Mayne A. J.; Bendounan A.; Dappe Y. J.; Kara A.; Dujardin G.; Oughaddou H. Blue Phosphorene Reactivity On The Au(111) Surface. Nanotechnology 2020, 31 (49), 495602.10.1088/1361-6528/abb26c. PubMed DOI
Zhou D.; Meng Q.; Si N.; Zhou X.; Zhai S.; Tang Q.; Ji Q.; Zhou M.; Niu T.; Fuchs H. Epitaxial Growth Of Flat, Metallic Monolayer Phosphorene On Metal Oxide. ACS Nano 2020, 14 (2), 2385–2394. 10.1021/acsnano.9b09588. PubMed DOI
Adak A. K.; Sharma D.; Narasimhan S. Blue And Black Phosphorene On Metal Substrates: A Density Functional Theory Study. J. Phys.: Condens. Matter 2022, 34 (8), 08400110.1088/1361-648X/ac394e. PubMed DOI
Walen H.; Liu D.-J.; Oh J.; Lim H.; Evans J. W.; Kim Y.; Thiel P. A. Reconstruction Of Steps On The Cu(111) Surface Induced By Sulfur. J. Chem. Phys. 2015, 142 (19), 194711.10.1063/1.4921258. PubMed DOI
Arias P.; Ebnonnasir A.; Ciobanu C. V.; Kodambaka S. Growth Kinetics Of Two-Dimensional Hexagonal Boron Nitride Layers On Pd(111). Nano Lett. 2020, 20 (4), 2886–2891. 10.1021/acs.nanolett.0c00704. PubMed DOI
Saam W. F.; Shenoy V. B. Nanoscale Faceting Due To Elastic Interactions And Crystal Shapes Near Si (1 1 3). Surf. Sci. 2003, 541 (1–3), 207–216. 10.1016/S0039-6028(03)00921-X. DOI
Acun A.; Poelsema B.; Zandvliet H. J. W.; van Gastel R. The Instability Of Silicene On Ag(111). Appl. Phys. Lett. 2013, 103 (26), 263119.10.1063/1.4860964. DOI
Jones R. O.; Hohl D. Structure Of Phosphorus Clusters Using Simulated Annealing—P2 To P8. J. Chem. Phys. 1990, 92 (11), 6710–6721. 10.1063/1.458306. DOI
Zhang W.; Enriquez H.; Tong Y.; Mayne A. J.; Bendounan A.; Dappe Y. J.; Kara A.; Dujardin G.; Oughaddou H. Phosphorus Pentamers: Floating Nanoflowers Form A 2D Network. Adv. Funct. Mater. 2020, 30 (52), 200453110.1002/adfm.202004531. DOI
Zhang J. L.; Zhao S.; Sun S.; Niu T.; Zhou X.; Gu C. D.; Han C.; Yuan K. D.; Guo R.; Wang L.; Li Z.; Chen W. Phosphorus Nanostripe Arrays On Cu(110): A Case Study To Understand The Substrate Effect On The Phosphorus Thin Film Growth. Advanced Materials Interfaces 2017, 4 (14), 160116710.1002/admi.201601167. DOI
Lahiri J.; Miller T.; Adamska L.; Oleynik I. I.; Batzill M. Graphene Growth On Ni (111) By Transformation Of A Surface Carbide. Nano Lett. 2011, 11 (2), 518–522. 10.1021/nl103383b. PubMed DOI
Repp J.; Moresco F.; Meyer G.; Rieder K.-H.; Hyldgaard P.; Persson M. Substrate Mediated Long-Range Oscillatory Interaction Between Adatoms: Cu /Cu(111). Phys. Rev. Lett. 2000, 85 (14), 2981.10.1103/PhysRevLett.85.2981. PubMed DOI
Kim Y.; Cruz S. S.; Lee K.; Alawode B. O.; Choi C.; Song Y.; Johnson J. M.; Heidelberger C.; Kong W.; Choi S.; Qiao K.; Almansouri I.; Fitzgerald E. A.; Kong J.; Kolpak A. M.; Hwang J.; Kim J. Remote Epitaxy Through Graphene Enables Two-Dimensional Material-Based Layer Transfer. Nature 2017, 544 (7650), 340–343. 10.1038/nature22053. PubMed DOI
Yu Q.; Lian J.; Siriponglert S.; Li H.; Chen Y. P.; Pei S.-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.10.1063/1.2982585. DOI
Murata Y.; Petrova V.; Kappes B. B.; Ebnonnasir A.; Petrov I.; Xie Y.-H.; Ciobanu C. V.; Kodambaka S. Moiré Superstructures Of Graphene On Faceted Nickel Islands. ACS Nano 2010, 4 (11), 6509–6514. 10.1021/nn102446y. PubMed DOI
Kresse G.; Furthmüller J. Efficient Iterative Schemes For Ab Initio Total-Energy Calculations Using A Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169.10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G.; Joubert D. From Ultrasoft Pseudopotentials To The Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758.10.1103/PhysRevB.59.1758. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865.10.1103/PhysRevLett.77.3865. PubMed DOI