The e-STROKE Study: The Design of a Prospective Observational Multicentral Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39852295
PubMed Central
PMC11766030
DOI
10.3390/jcdd12010017
PII: jcdd12010017
Knihovny.cz E-zdroje
- Klíčová slova
- CT imaging, CT perfusion, multimodal CT, predictive value, stroke, stroke mimics,
- Publikační typ
- časopisecké články MeSH
Introduction: The e-STROKE study is a prospective, multicenter observational study designed to assess the impact of various CT parameters (including e-ASPECT, CT perfusion (CTP), collateral flow status, and the size and location of the ischemic lesion) on the clinical outcomes of patients with ischemic stroke, as evaluated by the modified Rankins Scale (mRS) three months post-stroke. This study also aims to investigate whether the use of multimodal CT imaging increases the number of patients eligible for recanalization therapy. The analysis will integrate data from the RES-Q registry and radiological data from the e-STROKE system provided by Brainomix Ltd. Aims: The primary aim is to determine the predictive value of CT parameters (e-ASPECTS, CTP, collateral vessel status, and ischemic lesion volume and location) on three-month functional outcomes, as defined by the mRS, in patients with non-lacunar stroke following recanalization treatment (IVT and/or MT). The secondary aim is to evaluate whether multimodal CT examination leads to an increase in the number of patients eligible for recanalization therapy. Additionally, this study seeks to assess the specificity and sensitivity of multimodal CT in distinguishing stroke mimics from actual strokes. Methods: This multicenter observational study involves patients with suspected acute ischemic stroke and a premorbid mRS ≤ 4, who are treated with endovascular thrombectomy (EVT), intravenous thrombolysis (IVT), or managed conservatively in stroke centers within the Czech Stroke Research Network (STROCZECH), which is part of the Czech Clinical Research Infrastructure Network (CZECRIN). Data collection includes demographic, clinical, and imaging data variables such as age, sex, ethnicity, risk factors, treatment times (OTT, DNT, and OGT), TICI scores, post-treatment hemorrhage (ECAS II), mRS outcome, stroke etiology, e-ASPECTS, acute ischemic volume (AIV), thrombus length on NCCT, CTA collateral score and collateral vessel density, location of large vessel occlusion, ischemic core, hypoperfusion volume, mismatch ratio and volume, final infarct volume, hemorrhage volume, and MRI in case of negative follow-up NCCT. Conclusions: We anticipate collecting robust clinical and radiological data from approximately 2000 patients across 22 centers over a 12-month period. The results are expected to enhance the precision of diagnostic and prognostic radiological markers in managing acute stroke.
Cerebrovascular Research Program International Clinical Research Center 65691 Brno Czech Republic
Department of Imaging Methods Faculty of Medicine Ostrava University 70103 Ostrava Czech Republic
Department of Neurology University Hospital in Ostrava 70800 Ostrava Czech Republic
Neurology Department Regional Hospital České Budějovice 37001 České Budějovice Czech Republic
Neurology Department T Baťa Regional Hospital Zlín 76275 Zlín Czech Republic
Zobrazit více v PubMed
Hill M.D., Demchuk A.M., Goyal M., Jovin T.G., Foster L.D., Tomsick T.A., von Kummer R., Yeatts S.D., Palesch Y.Y., Broderick J.P., et al. Alberta Stroke Program early computed tomography score to select patients for endovascular treatment: Interventional Management of Stroke (IMS)-III Trial. Stroke. 2014;45:444–449. doi: 10.1161/STROKEAHA.113.003580. PubMed DOI PMC
Wardlaw J.M., Mielke O. Early signs of brain infarction at CT: Observer reliability and outcome after thrombolytic treatment—Systematic review. Radiology. 2005;235:444–453. doi: 10.1148/radiol.2352040262. PubMed DOI
Barber P.A., Demchuk A.M., Zhang J., Buchan A.M., ASPECTS Study Group Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet. 2000;355:1670–1674. doi: 10.1016/S0140-6736(00)02237-6. PubMed DOI
Sundaram V.K., Goldstein J., Wheelwright D., Aggarwal A., Pawha P.S., Doshi A., Fifi J.T., De Leacy R., Mocco J., Puig J. Automated ASPECTS in Acute Ischemic Stroke: A Comparative Analysis with CT Perfusion. AJNR Am. J. Neuroradiol. 2019;40:2033–2038. doi: 10.3174/ajnr.A6303. PubMed DOI PMC
Neuhaus A., Seyedsaadat S.M., Mihal D., Benson J., Mark I., Kallmes D.F., Brinjikji W. Region-specific agreement in ASPECTS estimation between neuroradiologists and e-ASPECTS software. J. Neurointerv. Surg. 2020;12:720–724. doi: 10.1136/neurintsurg-2019-015442. PubMed DOI
Goebel J., Stenzel E., Guberina N., Wanke I., Koehrmann M., Kleinschnitz C., Umutlu L., Forsting M., Moenninghoff C., Radbruch A. Automated ASPECT rating: Comparison between the Frontier ASPECT Score software and the Brainomix software. Neuroradiology. 2018;60:1267–1272. doi: 10.1007/s00234-018-2098-x. PubMed DOI
Nagel S., Sinha D., Day D., Reith W., Chapot R., Papanagiotou P., Warburton E.A., Guyler P., Tysoe S., Fassbender K., et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int. J. Stroke. 2017;12:615–622. doi: 10.1177/1747493016681020. PubMed DOI
Herweh C., Ringleb P.A., Rauch G., Gerry S., Behrens L., Mohlenbruch M., Gottorf R., Richter D., Schieber S., Nagel S. Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. Int. J. Stroke. 2016;11:438–445. doi: 10.1177/1747493016632244. PubMed DOI
Martins S.O., Mont’Alverne F., Rebello L.C., Abud D.G., Silva G.S., Lima F.O., Parente B.S.M., Nakiri G.S., Faria M.B., Frudit M.E., et al. Thrombectomy for Stroke in the Public Health Care System of Brazil. N. Engl. J. Med. 2020;382:2316–2326. doi: 10.1056/NEJMoa2000120. PubMed DOI
Albers G.W., Marks M.P., Kemp S., Christensen S., Tsai J.P., Ortega-Gutierrez S., McTaggart R.A., Torbey M.T., Kim-Tenser M., Leslie-Mazwi T., et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018;378:708–718. doi: 10.1056/NEJMoa1713973. PubMed DOI PMC
Campbell B.C., Mitchell P.J., Kleinig T.J., Dewey H.M., Churilov L., Yassi N., Yan B., Dowling R.J., Parsons M.W., Oxley T.J., et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015;372:1009–1018. doi: 10.1056/NEJMoa1414792. PubMed DOI
Nogueira R.G., Jadhav A.P., Haussen D.C., Bonafe A., Budzik R.F., Bhuva P., Yavagal D.R., Ribo M., Cognard C., Hanel R.A., et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018;378:11–21. doi: 10.1056/NEJMoa1706442. PubMed DOI
Menon B.K., d’Esterre C.D., Qazi E.M., Almekhlafi M., Hahn L., Demchuk A.M., Goyal M. Multiphase CT Angiography: A New Tool for the Imaging Triage of Patients with Acute Ischemic Stroke. Radiology. 2015;275:510–520. doi: 10.1148/radiol.15142256. PubMed DOI
Cvikova M., Harsany M., Vinklarek J., Štefela J., Fojtová I., Mikulík R. Effectiveness of computed tomography perfusion imaging in stroke management. Front. Neurol. 2024;15:1390501. doi: 10.3389/fneur.2024.1390501. PubMed DOI PMC
Sarraj A., Hassan A.E., Abraham M.G., Ortega-Gutierrez S., Kasner S.E., Hussain M.S., Chen M., Churilov L., Johns H., Sitton C.W., et al. Endovascular Thrombectomy for Large Ischemic Stroke Across Ischemic Injury and Penumbra Profiles. JAMA. 2024;331:750–763. doi: 10.1001/jama.2024.0572. PubMed DOI PMC
Strbian D., Engelter S., Michel P., Meretoja A., Sekoranja L., Ahlhelm F.J., Mustanoja S., Kuzmanovic I., Sairanen T., Forss N., et al. Symptomatic intracranial hemorrhage after stroke thrombolysis: The SEDAN score. Ann. Neurol. 2012;71:634–641. doi: 10.1002/ana.23546. PubMed DOI
Mazya M.V., Bovi P., Castillo J., Jatuzis D., Kobayashi A., Wahlgren N., Ahmed N. External Validation of the SEDAN Score for Prediction of Intracerebral Hemorrhage in Stroke Thrombolysis. Stroke. 2013;44:1595–1600. doi: 10.1161/STROKEAHA.113.000794. PubMed DOI
Singer O.C., Humpich M.C., Fiehler J., Albers G.W., Lansberg M.G., Kastrup A., Rovira A., Liebeskind D.S., Gass A., Rosso C., et al. Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann. Neurol. 2008;63:52–60. doi: 10.1002/ana.21222. PubMed DOI
Campbell B.C., Christensen S., Parsons M.W., Churilov L., Desmond P.M., Barber P.A., Butcher K.S., Levi C.R., De Silva D.A., Lansberg M.G., et al. Advanced imaging improves prediction of hemorrhage after stroke thrombolysis. Ann. Neurol. 2013;73:510–519. doi: 10.1002/ana.23837. PubMed DOI PMC
Albers G.W., Thijs V.N., Wechsler L., Kemp S., Schlaug G., Skalabrin E., Bammer R., Kakuda W., Lansberg M.G., Shuaib A., et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: The diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann. Neurol. 2006;60:508–517. doi: 10.1002/ana.20976. PubMed DOI
Suh C.H., Jung S.C., Cho S.J., Kim D., Lee J.B., Woo D.C., Oh W.Y., Lee J.G., Kim K.W. Perfusion CT for prediction of hemorrhagic transformation in acute ischemic stroke: A systematic review and meta-analysis. Eur. Radiol. 2019;29:4077–4087. doi: 10.1007/s00330-018-5936-7. PubMed DOI
Bucker A., Boers A.M., Bot J.C.J., Berkhemer O.A., Lingsma H.F., Yoo A.J., van Zwam W.H., van Oostenbrugge R.J., van der Lugt A., Dippel D.W.J., et al. MR CLEAN Trial Investigators (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands). Associations of ischemic lesion volume with functional outcome in patients with acute ischemic stroke: 24-hour versus 1-week imaging. Stroke. 2017;48:1233–1240. PubMed
Manning N.W., Warne C.D., Meyers P.M. Reperfusion and clinical outcomes in acute ischemic stroke: Systematic review and meta-analysis of the stent-retriever-based, early window endovascular stroke trials. Front. Neurol. 2018;9:301. doi: 10.3389/fneur.2018.00301. PubMed DOI PMC
Albers G.W., Goyal M., Jahan R., Bonafe A., Diener H.C., Levy E.I., Pereira V.M., Cognard C., Yavagal D.R., Saver J.L. Relationships between imaging assessments and outcomes in solitaire with the intention for thrombectomy as primary endovascular treatment for acute ischemic stroke. Stroke. 2015;46:2786–2794. doi: 10.1161/STROKEAHA.115.010710. PubMed DOI
Rangaraju S., Liggins J.T.P., Aghaebrahim A., Streib C., Sun C.H., Gupta R., Nogueira R., Frankel M., Mlynash M., Lansberg M., et al. Pittsburgh outcomes after stroke thrombectomy score predicts outcomes after endovascular therapy for anterior circulation large vessel occlusions. Stroke. 2014;45:2298–2304. doi: 10.1161/STROKEAHA.114.005595. PubMed DOI
Zaidi S.F., Aghaebrahim A., Urra X., Jumaa M.A., Jankowitz B., Hammer M., Nogueira R., Horowitz M., Reddy V., Jovin T.G. Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy. Stroke. 2012;43:3238–3244. doi: 10.1161/STROKEAHA.112.671594. PubMed DOI
Van Everdingen K.J., Van Der Grond J., Kappelle L.J., Ramos L.M., Mali W.P. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke. 1998;29:1783–1790. doi: 10.1161/01.STR.29.9.1783. PubMed DOI
Kral J., Cabal M., Kasickova L., Havelka J., Jonszta T., Volny O., Bar M. Machine learning volumetry of ischemic brain lesions on CT after thrombectomy—Prospective diagnostic accuracy study in ischemic stroke patients. Neuroradiology. 2020;62:1239–1245. doi: 10.1007/s00234-020-02419-7. PubMed DOI
Bouslama M., Ravindran K., Harston G., Rodrigues G.M., Pisani L., Haussen D.C., Frankel M.R., Nogueira R.G. Noncontrast Computed Tomography e-Stroke Infarct Volume Is Similar to RAPID Computed Tomography Perfusion in Estimating Postreperfusion Infarct Volumes. Stroke. 2021;52:634–641. doi: 10.1161/STROKEAHA.120.031651. PubMed DOI
Seker F., Pfaff J.A.R., Mokli Y., Berberich A., Namias R., Gerry S., Nagel S., Bendszus M., Herweh C. Diagnostic accuracy of automated occlusion detection in CT angiography using e-CTA. Int. J. Stroke. 2022;17:77–82. doi: 10.1177/1747493021992592. PubMed DOI PMC
Tan I.Y., Demchuk A.M., Hopyan J., Zhang L., Gladstone D., Wong K., Martin M., Symons S.P., Fox A.J., Aviv R.I. CT angiography clot burden score and collateral score: Correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. AJNR Am. J. Neuroradiol. 2009;30:525–531. doi: 10.3174/ajnr.A1408. PubMed DOI PMC
Ma H., Campbell B.C.V., Parsons M.W., Churilov L., Levi C.R., Hsu C., Kleinig T.J., Wijeratne T., Curtze S., Dewey H.M., et al. Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. N. Engl. J. Med. 2019;380:1795–1803. doi: 10.1056/NEJMoa1813046. Erratum in N. Engl. J. Med. 2021, 384, 1278. PubMed DOI