Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39853036
PubMed Central
PMC11769340
DOI
10.3390/toxics13010038
PII: toxics13010038
Knihovny.cz E-zdroje
- Klíčová slova
- co-interaction, immunomodulation, pest management, physiological toxicity, pollutants, sublethal exposure,
- Publikační typ
- časopisecké články MeSH
Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm Spodoptera littoralis. Co-exposure to Zn and Fe improved leafworm survival (100% at 10-20 mg, 85% at 40 mg) compared to separate exposures. Low Zn/Fe/PQ toxicity likely stemmed from metal complexes having efficient chelating activity, enhancing resilience. Low exposure to Zn, Fe, and Zn/Fe increased food intake and larval weight and affected frass production. Interestingly, the combined application of Zn/Fe/PQ increased larval and pupal weight in surviving individuals. Zn/Fe was found to be crucial in the ecdysis of larvae into pupae, resulting in reduced larval mortality and a prolonged pupal ecdysis duration (% days). Providing important information regarding physiological responses and pest management, this study demonstrated the realistic conditions caused by the interactions of biological trace elements, such as Zn and Fe, with PQ. A disc diffusion susceptibility test in hemolymph bacteria revealed differences among Zn, Zn/Fe, and Zn/Fe/PQ, suggesting that their interaction might play an immunomodulatory role in S. littoralis.
Zobrazit více v PubMed
Rashid A., Schutte B.J., Ulery A., Deyholos M.K., Sanogo S., Lehnhoff E.A., Beck L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy. 2023;13:1521. doi: 10.3390/agronomy13061521. DOI
Morina F., Mishra A., Mijovilovich A., Matoušková Š., Brückner D., Špak J., Küpper H. Interaction Between Zn Deficiency, Toxicity and Turnip Yellow Mosaic Virus Infection in. Front. Plant Sci. 2020;11:739. doi: 10.3389/fpls.2020.00739. PubMed DOI PMC
Morina F., Mijovilovich A., Mishra A., Brückner D., Vujić B., Bokhari S.N.H., Špak J., Falkenberg G., Küpper H. Cadmium and Zn hyperaccumulation provide efficient constitutive defense against Turnip yellow mosaic virus infection in Noccaea caerulescens. Plant Science. 2023;336:111864. doi: 10.1016/j.plantsci.2023.111864. PubMed DOI
Franceschini Sarria A.L., Matos A.P., Volante A.C., Bernardo A.R., Sabbag Cunha G.O., Fernandes J.B., Rossi Forim M., Vieira P.C., da Silva M.F. das G.F. Insecticidal Activity of Copper (II) Complexes with Flavanone Derivatives. Nat. Prod. Res. 2022;36:1342–1345. doi: 10.1080/14786419.2020.1868465. PubMed DOI
Jin P., Chen J., Zhan H., Huang S., Wang J., Shu Y. Accumulation and Excretion of Zinc and Their Effects on Growth and Food Utilization of Spodoptera Litura (Lepidoptera: Noctuidae) Ecotoxicol. Environ. Saf. 2020;202:110883. doi: 10.1016/j.ecoenv.2020.110883. PubMed DOI
Zhang Y., Xu H., Tu C., Han R., Luo J., Xu L. Enhanced capacity of a leaf beetle to combat dual stress from entomopathogens and herbicides mediated by associated microbiota. Integr. Zool. 2024;19:1092–1104. doi: 10.1111/1749-4877.12812. PubMed DOI
Bonilla-Ramirez L., Jimenez-Del-Rio M., Velez-Pardo C. Low Doses of Paraquat and Polyphenols Prolong Life Span and Locomotor Activity in Knock-down Parkin Drosophila Melanogaster Exposed to Oxidative Stress Stimuli: Implication in Autosomal Recessive Juvenile Parkinsonism. Gene. 2013;512:355–363. doi: 10.1016/j.gene.2012.09.120. PubMed DOI
Weber A.L., Khan G.F., Magwire M.M., Tabor C.L., Mackay T.F.C., Anholt R.R.H. Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila Melanogaster. PLoS ONE. 2012;7:e34745. doi: 10.1371/journal.pone.0034745. PubMed DOI PMC
Shukla A.K., Pragya P., Chaouhan H.S., Tiwari A.K., Patel D.K., Abdin M.Z., Chowdhuri D.K. Heat Shock Protein-70 (Hsp-70) Suppresses Paraquat-Induced Neurodegeneration by Inhibiting JNK and Caspase-3 Activation in Drosophila Model of Parkinson’s Disease. PLoS ONE. 2014;9:e98886. doi: 10.1371/journal.pone.0098886. PubMed DOI PMC
Jimenez-Del-Rio M., Guzman-Martinez C., Velez-Pardo C. The Effects of Polyphenols on Survival and Locomotor Activity in Drosophila Melanogaster Exposed to Iron and Paraquat. Neurochem. Res. 2010;35:227–238. doi: 10.1007/s11064-009-0046-1. PubMed DOI
Yan S., Tan M., Zhang A., Jiang D. The exposure risk of heavy metals to insect pests and their impact on pests occurrence and cross-tolerance to insecticides: A review. Sci. Total Environ. 2024;916:170274. doi: 10.1016/j.scitotenv.2024.170274. PubMed DOI
Tang Q., Ma K., Chi H., Hou Y., Gao X. Transgenerational Hormetic Effects of Sublethal Dose of Flupyradifurone on the Green Peach Aphid, Myzus Persicae (Sulzer) (Hemiptera: Aphididae) PLoS ONE. 2019;14:e0208058. doi: 10.1371/journal.pone.0208058. PubMed DOI PMC
Calap-Quintana P., González-Fernández J., Sebastiá-Ortega N., Llorens J.V., Moltó M.D. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int. J. Mol. Sci. 2017;18:1456. doi: 10.3390/ijms18071456. PubMed DOI PMC
Wu H., Tan M., Li Y., Zheng L., Xu J., Jiang D. The Immunotoxicity of Cd Exposure to Gypsy Moth Larvae: An Integrated Analysis of Cellular Immunity and Humoral Immunity. Ecotoxicol. Environ. Saf. 2022;235:113434. doi: 10.1016/j.ecoenv.2022.113434. PubMed DOI
Feng R., Chen L., Chen K. Cytotoxicity and Changes in Gene Expression under Aluminium Potassium Sulfate on Spodoptera Frugiperda 9 Cells. Ecotoxicology. 2021;30:2056–2070. doi: 10.1007/s10646-021-02478-3. PubMed DOI
Kandil M.A.-H., Sammour E.A., Abdel-Aziz N.F., Agamy E.A.E.M., El-Bakry A.M., Abdelmaksoud N.M. Comparative Toxicity of New Insecticides Generations against Tomato Leafminer Tuta Absoluta and Their Biochemical Effects on Tomato Plants. Bull. Natl. Res. Cent. 2020;44:126. doi: 10.1186/s42269-020-00382-0. DOI
El-Sheikh E.-S.A.-M., El-Saleh M.A., Aioub A.A., Desuky W.M. Toxic Effects of Neonicotinoid Insecticides on a Field Strain of Cotton Leafworm, Spodoptera Littoralis. Asian J. Biol. Sci. 2018;11:179–185.
Cabrita A., Medeiros A.M., Pereira T., Rodrigues A.S., Kranendonk M., Mendes C.S. Motor Dysfunction in as a Biomarker for Developmental Neurotoxicity. iScience. 2022;25:104541. doi: 10.1016/j.isci.2022.104541. PubMed DOI PMC
Cardoso-Jaime V., Broderick N.A., Maya-Maldonado K. Metal Ions in Insect Reproduction: A Crosstalk between Reproductive Physiology and Immunity. Curr. Opin. Insect Sci. 2022;52:100924. doi: 10.1016/j.cois.2022.100924. PubMed DOI PMC
Nascarella M.A., Stoffolano J.G., Jr., Stanek E.J., 3rd, Kostecki P.T., Calabrese E.J. Hormesis and Stage Specific Toxicity Induced by Cadmium in an Insect Model, the Queen Blowfly, Phormia Regina Meig. Environ. Pollut. 2003;124:257–262. doi: 10.1016/s0269-7491(02)00479-7. PubMed DOI
Hafeez M., Ullah F., Khan M.M., Li X., Zhang Z., Shah S., Imran M., Assiri M.A., Fernández-Grandon G.M., Desneux N., et al. Metabolic-Based Insecticide Resistance Mechanism and Ecofriendly Approaches for Controlling of Beet Armyworm Spodoptera Exigua: A Review. Environ. Sci. Pollut. Res. Int. 2021;29:1746–1762. doi: 10.1007/s11356-021-16974-w. PubMed DOI
Rabelo M.M., Santos I.B., Paula-Moraes S.V. (Hubner) (Lepidoptera: Noctuidae) Fitness and Resistance Stability to Diamide and Pyrethroid Insecticides in the United States. Insects. 2022;13:365. doi: 10.3390/insects13040365. PubMed DOI PMC
Sharaby A.M., EL-Hawary F.M., Moawad S.S. Zinc Sulfate as a Growth Disruptor for Spodoptera Littoralis with Reference to Histological Changes in Larval Endocrine Glands. IOSR J. Agric. Vet. Sci. 2013;5:67–74. doi: 10.9790/2380-0536774. DOI
Ali S., Ullah M.I., Saeed M.F., Khalid S., Saqib M., Arshad M., Afzal M., Damalas C.A. Heavy Metal Exposure through Artificial Diet Reduces Growth and Survival of Spodoptera Litura (Lepidoptera: Noctuidae) Environ. Sci. Pollut. Res. Int. 2019;26:14426–14434. doi: 10.1007/s11356-019-04792-0. PubMed DOI
Tarnawska M., Babczyńska A., Hassa K., Kafel A., Płachetka-Bożek A., Augustyniak J., Dziewięcka M., Flasz B., Augustyniak M. Protective Role of Zinc in Spodoptera Exigua Larvae under 135-Generational Cadmium Exposure. Chemosphere. 2019;235:785–793. doi: 10.1016/j.chemosphere.2019.06.209. PubMed DOI
Slobodian M.R., Petahtegoose J.D., Wallis A.L., Levesque D.C., Merritt T.J.S. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. Toxics. 2021;9:269. doi: 10.3390/toxics9100269. PubMed DOI PMC
He B., Liu Z., Wang Y., Cheng L., Qing Q., Duan J., Xu J., Dang X., Zhou Z., Li Z. Imidacloprid Activates ROS and Causes Mortality in Honey Bees (Apis mellifera) by Inducing Iron Overload. Ecotoxicol. Environ. Saf. 2021;228:112709. doi: 10.1016/j.ecoenv.2021.112709. PubMed DOI
Peng J., Peng L., Stevenson F.F., Doctrow S.R., Andersen J.K. Iron and Paraquat as Synergistic Environmental Risk Factors in Sporadic Parkinson’s Disease Accelerate Age-Related Neurodegeneration. J. Neurosci. 2007;27:6914–6922. doi: 10.1523/JNEUROSCI.1569-07.2007. PubMed DOI PMC
Chang C.J., Kao C.H. Paraquat toxicity is reduced by metal chelators in rice leaves. Physiol. Plant. 1997;22:163–168. doi: 10.1111/j.1399-3054.1997.tb01025.x. DOI
Wouts W.M. Mass Production of the Entomogenous Nematode Heterorhabditis Heliothidis (Nematoda: Heterorhabditidae) on Artificial Media. J. Nematol. 1981;13:467–469. PubMed PMC
Erre L.S., Garribba E., Micera G., Sardone N. Metal Complexes of Imazapyr, a Herbicide Provided with Efficient Metal-Chelating Ability: Crystal Structure of the Cobalt (III) and Manganese (II) Complexes. Inorganica Chim. Acta. 1998;272:68–73. doi: 10.1016/S0020-1693(97)05860-X. DOI
Stolpe C., Müller C. Effects of Single and Combined Heavy Metals and Their Chelators on Aphid Performance and Preferences. Environ. Toxicol. Chem. 2016;35:3023–3030. doi: 10.1002/etc.3489. PubMed DOI
Song Y.X., Gao H.H., Zhang L., Zhao H.H. Effects of combined stress of heavy metal cadmium and Zinc on the life table parameters and fecundity of English grain aphid Sitobion avenae (Hemiptera: Aphididae) J. Plant Protec. 2017;44:406–412.
Bednarska A.J., Opyd M., Żurawicz E., Laskowski R. Regulation of body metal concentrations: Toxicokinetics of cadmium and zinc in crickets. Ecotoxicol. Environ. Saf. 2015;119:9–14. doi: 10.1016/j.ecoenv.2015.04.056. PubMed DOI
Shu Y., Gao Y., Sun H., Zou Z., Zhou Q., Zhang G. Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae) Ecotoxicol. Environ. Saf. 2009;72:2130–2136. doi: 10.1016/j.ecoenv.2009.06.004. PubMed DOI
Sell D.K., Schmidt C.H. Chelating Agents Suppress Pupation of the Cabbage Looper. J. Econ. Entomol. 1968;61:946–949. doi: 10.1093/jee/61.4.946. DOI
Wiegand C., Pehkonen S., Akkanen J., Penttinen O.P., Kukkonen J.V.K. Bioaccumulation of paraquat by Lumbriculus variegatus in the presence of dissolved natural organic matter and impact on energy costs, biotransformation and antioxidative enzymes. Chemosphere. 2007;66:558–566. doi: 10.1016/j.chemosphere.2006.05.048. PubMed DOI
Ballan-Dufrançais C. Localization of Metals in Cells of Pterygote Insects. Microsc. Res. Tech. 2002;56:403–420. doi: 10.1002/jemt.10041. PubMed DOI
Bonneton F., Wegnez M. Developmental Variability of Metallothionein Mtn Gene Expression in the Species of the Drosophila Melanogaster Subgroup. Dev. Genet. 1995;16:253–263. doi: 10.1002/dvg.1020160305. PubMed DOI
Durliat M., Bonneton F., Boissonneau E., André M., Wegnez M. Expression of Metallothionein Genes during the Post-Embryonic Development of Drosophila Melanogaster. Biometals. 1995;8:339–351. doi: 10.1007/BF00141608. PubMed DOI
Shaik H.A., Mishra A., Sehnal F. Silk Recycling in Larvae of the Wax Moth, Galleria Mellonella (Lepidoptera: Pyralidae) Eur. J. Entomol. 2017;114:61–65. doi: 10.14411/eje.2017.009. DOI
Ortega-Arellano H.F., Jimenez-Del-Rio M., Velez-Pardo C. Melatonin Increases Life Span, Restores the Locomotor Activity, and Reduces Lipid Peroxidation (LPO) in Transgenic Knockdown Parkin Drosophila melanogaster Exposed to Paraquat or Paraquat/Iron. Neurotox. Res. 2021;39:1551–1563. doi: 10.1007/s12640-021-00397-z. PubMed DOI
Takeda A. Movement of Zinc and Its Functional Significance in the Brain. Brain Res. Brain Res. Rev. 2000;34:137–148. doi: 10.1016/S0165-0173(00)00044-8. PubMed DOI
Shaik H.A., Mishra A., Hussein H.M., Habuštová O.S., Sehnal F. Competitive Interactions between Entomopathogenic Nematodes and Parasitoid Venom. J. Appl. Entomol. 2020;144:481–490. doi: 10.1111/jen.12750. DOI
Sridhara S., Bhat J.V. Trace Element Nutrition of the silkwormBombyx Mori L. Proc. Indian Acad. Sci. Sect. B Biol. Sci. 1966;63:17–25. doi: 10.1007/BF03052022. DOI
Troxell B., Hassan H.M. Transcriptional Regulation by Ferric Uptake Regulator (Fur) in Pathogenic Bacteria. Front. Cell. Infect. Microbiol. 2013;3:59. doi: 10.3389/fcimb.2013.00059. PubMed DOI PMC
Gautam U.K., Hlávková D., Shaik H.A., Karaca I., Karaca G., Sezen K., Kodrík D. Adipokinetic Hormones Enhance the Efficacy of the Entomopathogenic Fungus in Model and Pest Insects. Pathogens. 2020;9:801. doi: 10.3390/pathogens9100801. PubMed DOI PMC
Shaik H.A., Mishra A., Sehadová H., Kodrík D. Responses of Sericotropin to Toxic and Pathogenic Challenges: Possible Role in Defense of the Wax Moth Galleria Mellonella. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;227:108633. doi: 10.1016/j.cbpc.2019.108633. PubMed DOI