Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis

. 2025 Jan 05 ; 13 (1) : . [epub] 20250105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39853036

Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm Spodoptera littoralis. Co-exposure to Zn and Fe improved leafworm survival (100% at 10-20 mg, 85% at 40 mg) compared to separate exposures. Low Zn/Fe/PQ toxicity likely stemmed from metal complexes having efficient chelating activity, enhancing resilience. Low exposure to Zn, Fe, and Zn/Fe increased food intake and larval weight and affected frass production. Interestingly, the combined application of Zn/Fe/PQ increased larval and pupal weight in surviving individuals. Zn/Fe was found to be crucial in the ecdysis of larvae into pupae, resulting in reduced larval mortality and a prolonged pupal ecdysis duration (% days). Providing important information regarding physiological responses and pest management, this study demonstrated the realistic conditions caused by the interactions of biological trace elements, such as Zn and Fe, with PQ. A disc diffusion susceptibility test in hemolymph bacteria revealed differences among Zn, Zn/Fe, and Zn/Fe/PQ, suggesting that their interaction might play an immunomodulatory role in S. littoralis.

Zobrazit více v PubMed

Rashid A., Schutte B.J., Ulery A., Deyholos M.K., Sanogo S., Lehnhoff E.A., Beck L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy. 2023;13:1521. doi: 10.3390/agronomy13061521. DOI

Morina F., Mishra A., Mijovilovich A., Matoušková Š., Brückner D., Špak J., Küpper H. Interaction Between Zn Deficiency, Toxicity and Turnip Yellow Mosaic Virus Infection in. Front. Plant Sci. 2020;11:739. doi: 10.3389/fpls.2020.00739. PubMed DOI PMC

Morina F., Mijovilovich A., Mishra A., Brückner D., Vujić B., Bokhari S.N.H., Špak J., Falkenberg G., Küpper H. Cadmium and Zn hyperaccumulation provide efficient constitutive defense against Turnip yellow mosaic virus infection in Noccaea caerulescens. Plant Science. 2023;336:111864. doi: 10.1016/j.plantsci.2023.111864. PubMed DOI

Franceschini Sarria A.L., Matos A.P., Volante A.C., Bernardo A.R., Sabbag Cunha G.O., Fernandes J.B., Rossi Forim M., Vieira P.C., da Silva M.F. das G.F. Insecticidal Activity of Copper (II) Complexes with Flavanone Derivatives. Nat. Prod. Res. 2022;36:1342–1345. doi: 10.1080/14786419.2020.1868465. PubMed DOI

Jin P., Chen J., Zhan H., Huang S., Wang J., Shu Y. Accumulation and Excretion of Zinc and Their Effects on Growth and Food Utilization of Spodoptera Litura (Lepidoptera: Noctuidae) Ecotoxicol. Environ. Saf. 2020;202:110883. doi: 10.1016/j.ecoenv.2020.110883. PubMed DOI

Zhang Y., Xu H., Tu C., Han R., Luo J., Xu L. Enhanced capacity of a leaf beetle to combat dual stress from entomopathogens and herbicides mediated by associated microbiota. Integr. Zool. 2024;19:1092–1104. doi: 10.1111/1749-4877.12812. PubMed DOI

Bonilla-Ramirez L., Jimenez-Del-Rio M., Velez-Pardo C. Low Doses of Paraquat and Polyphenols Prolong Life Span and Locomotor Activity in Knock-down Parkin Drosophila Melanogaster Exposed to Oxidative Stress Stimuli: Implication in Autosomal Recessive Juvenile Parkinsonism. Gene. 2013;512:355–363. doi: 10.1016/j.gene.2012.09.120. PubMed DOI

Weber A.L., Khan G.F., Magwire M.M., Tabor C.L., Mackay T.F.C., Anholt R.R.H. Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila Melanogaster. PLoS ONE. 2012;7:e34745. doi: 10.1371/journal.pone.0034745. PubMed DOI PMC

Shukla A.K., Pragya P., Chaouhan H.S., Tiwari A.K., Patel D.K., Abdin M.Z., Chowdhuri D.K. Heat Shock Protein-70 (Hsp-70) Suppresses Paraquat-Induced Neurodegeneration by Inhibiting JNK and Caspase-3 Activation in Drosophila Model of Parkinson’s Disease. PLoS ONE. 2014;9:e98886. doi: 10.1371/journal.pone.0098886. PubMed DOI PMC

Jimenez-Del-Rio M., Guzman-Martinez C., Velez-Pardo C. The Effects of Polyphenols on Survival and Locomotor Activity in Drosophila Melanogaster Exposed to Iron and Paraquat. Neurochem. Res. 2010;35:227–238. doi: 10.1007/s11064-009-0046-1. PubMed DOI

Yan S., Tan M., Zhang A., Jiang D. The exposure risk of heavy metals to insect pests and their impact on pests occurrence and cross-tolerance to insecticides: A review. Sci. Total Environ. 2024;916:170274. doi: 10.1016/j.scitotenv.2024.170274. PubMed DOI

Tang Q., Ma K., Chi H., Hou Y., Gao X. Transgenerational Hormetic Effects of Sublethal Dose of Flupyradifurone on the Green Peach Aphid, Myzus Persicae (Sulzer) (Hemiptera: Aphididae) PLoS ONE. 2019;14:e0208058. doi: 10.1371/journal.pone.0208058. PubMed DOI PMC

Calap-Quintana P., González-Fernández J., Sebastiá-Ortega N., Llorens J.V., Moltó M.D. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int. J. Mol. Sci. 2017;18:1456. doi: 10.3390/ijms18071456. PubMed DOI PMC

Wu H., Tan M., Li Y., Zheng L., Xu J., Jiang D. The Immunotoxicity of Cd Exposure to Gypsy Moth Larvae: An Integrated Analysis of Cellular Immunity and Humoral Immunity. Ecotoxicol. Environ. Saf. 2022;235:113434. doi: 10.1016/j.ecoenv.2022.113434. PubMed DOI

Feng R., Chen L., Chen K. Cytotoxicity and Changes in Gene Expression under Aluminium Potassium Sulfate on Spodoptera Frugiperda 9 Cells. Ecotoxicology. 2021;30:2056–2070. doi: 10.1007/s10646-021-02478-3. PubMed DOI

Kandil M.A.-H., Sammour E.A., Abdel-Aziz N.F., Agamy E.A.E.M., El-Bakry A.M., Abdelmaksoud N.M. Comparative Toxicity of New Insecticides Generations against Tomato Leafminer Tuta Absoluta and Their Biochemical Effects on Tomato Plants. Bull. Natl. Res. Cent. 2020;44:126. doi: 10.1186/s42269-020-00382-0. DOI

El-Sheikh E.-S.A.-M., El-Saleh M.A., Aioub A.A., Desuky W.M. Toxic Effects of Neonicotinoid Insecticides on a Field Strain of Cotton Leafworm, Spodoptera Littoralis. Asian J. Biol. Sci. 2018;11:179–185.

Cabrita A., Medeiros A.M., Pereira T., Rodrigues A.S., Kranendonk M., Mendes C.S. Motor Dysfunction in as a Biomarker for Developmental Neurotoxicity. iScience. 2022;25:104541. doi: 10.1016/j.isci.2022.104541. PubMed DOI PMC

Cardoso-Jaime V., Broderick N.A., Maya-Maldonado K. Metal Ions in Insect Reproduction: A Crosstalk between Reproductive Physiology and Immunity. Curr. Opin. Insect Sci. 2022;52:100924. doi: 10.1016/j.cois.2022.100924. PubMed DOI PMC

Nascarella M.A., Stoffolano J.G., Jr., Stanek E.J., 3rd, Kostecki P.T., Calabrese E.J. Hormesis and Stage Specific Toxicity Induced by Cadmium in an Insect Model, the Queen Blowfly, Phormia Regina Meig. Environ. Pollut. 2003;124:257–262. doi: 10.1016/s0269-7491(02)00479-7. PubMed DOI

Hafeez M., Ullah F., Khan M.M., Li X., Zhang Z., Shah S., Imran M., Assiri M.A., Fernández-Grandon G.M., Desneux N., et al. Metabolic-Based Insecticide Resistance Mechanism and Ecofriendly Approaches for Controlling of Beet Armyworm Spodoptera Exigua: A Review. Environ. Sci. Pollut. Res. Int. 2021;29:1746–1762. doi: 10.1007/s11356-021-16974-w. PubMed DOI

Rabelo M.M., Santos I.B., Paula-Moraes S.V. (Hubner) (Lepidoptera: Noctuidae) Fitness and Resistance Stability to Diamide and Pyrethroid Insecticides in the United States. Insects. 2022;13:365. doi: 10.3390/insects13040365. PubMed DOI PMC

Sharaby A.M., EL-Hawary F.M., Moawad S.S. Zinc Sulfate as a Growth Disruptor for Spodoptera Littoralis with Reference to Histological Changes in Larval Endocrine Glands. IOSR J. Agric. Vet. Sci. 2013;5:67–74. doi: 10.9790/2380-0536774. DOI

Ali S., Ullah M.I., Saeed M.F., Khalid S., Saqib M., Arshad M., Afzal M., Damalas C.A. Heavy Metal Exposure through Artificial Diet Reduces Growth and Survival of Spodoptera Litura (Lepidoptera: Noctuidae) Environ. Sci. Pollut. Res. Int. 2019;26:14426–14434. doi: 10.1007/s11356-019-04792-0. PubMed DOI

Tarnawska M., Babczyńska A., Hassa K., Kafel A., Płachetka-Bożek A., Augustyniak J., Dziewięcka M., Flasz B., Augustyniak M. Protective Role of Zinc in Spodoptera Exigua Larvae under 135-Generational Cadmium Exposure. Chemosphere. 2019;235:785–793. doi: 10.1016/j.chemosphere.2019.06.209. PubMed DOI

Slobodian M.R., Petahtegoose J.D., Wallis A.L., Levesque D.C., Merritt T.J.S. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. Toxics. 2021;9:269. doi: 10.3390/toxics9100269. PubMed DOI PMC

He B., Liu Z., Wang Y., Cheng L., Qing Q., Duan J., Xu J., Dang X., Zhou Z., Li Z. Imidacloprid Activates ROS and Causes Mortality in Honey Bees (Apis mellifera) by Inducing Iron Overload. Ecotoxicol. Environ. Saf. 2021;228:112709. doi: 10.1016/j.ecoenv.2021.112709. PubMed DOI

Peng J., Peng L., Stevenson F.F., Doctrow S.R., Andersen J.K. Iron and Paraquat as Synergistic Environmental Risk Factors in Sporadic Parkinson’s Disease Accelerate Age-Related Neurodegeneration. J. Neurosci. 2007;27:6914–6922. doi: 10.1523/JNEUROSCI.1569-07.2007. PubMed DOI PMC

Chang C.J., Kao C.H. Paraquat toxicity is reduced by metal chelators in rice leaves. Physiol. Plant. 1997;22:163–168. doi: 10.1111/j.1399-3054.1997.tb01025.x. DOI

Wouts W.M. Mass Production of the Entomogenous Nematode Heterorhabditis Heliothidis (Nematoda: Heterorhabditidae) on Artificial Media. J. Nematol. 1981;13:467–469. PubMed PMC

Erre L.S., Garribba E., Micera G., Sardone N. Metal Complexes of Imazapyr, a Herbicide Provided with Efficient Metal-Chelating Ability: Crystal Structure of the Cobalt (III) and Manganese (II) Complexes. Inorganica Chim. Acta. 1998;272:68–73. doi: 10.1016/S0020-1693(97)05860-X. DOI

Stolpe C., Müller C. Effects of Single and Combined Heavy Metals and Their Chelators on Aphid Performance and Preferences. Environ. Toxicol. Chem. 2016;35:3023–3030. doi: 10.1002/etc.3489. PubMed DOI

Song Y.X., Gao H.H., Zhang L., Zhao H.H. Effects of combined stress of heavy metal cadmium and Zinc on the life table parameters and fecundity of English grain aphid Sitobion avenae (Hemiptera: Aphididae) J. Plant Protec. 2017;44:406–412.

Bednarska A.J., Opyd M., Żurawicz E., Laskowski R. Regulation of body metal concentrations: Toxicokinetics of cadmium and zinc in crickets. Ecotoxicol. Environ. Saf. 2015;119:9–14. doi: 10.1016/j.ecoenv.2015.04.056. PubMed DOI

Shu Y., Gao Y., Sun H., Zou Z., Zhou Q., Zhang G. Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae) Ecotoxicol. Environ. Saf. 2009;72:2130–2136. doi: 10.1016/j.ecoenv.2009.06.004. PubMed DOI

Sell D.K., Schmidt C.H. Chelating Agents Suppress Pupation of the Cabbage Looper. J. Econ. Entomol. 1968;61:946–949. doi: 10.1093/jee/61.4.946. DOI

Wiegand C., Pehkonen S., Akkanen J., Penttinen O.P., Kukkonen J.V.K. Bioaccumulation of paraquat by Lumbriculus variegatus in the presence of dissolved natural organic matter and impact on energy costs, biotransformation and antioxidative enzymes. Chemosphere. 2007;66:558–566. doi: 10.1016/j.chemosphere.2006.05.048. PubMed DOI

Ballan-Dufrançais C. Localization of Metals in Cells of Pterygote Insects. Microsc. Res. Tech. 2002;56:403–420. doi: 10.1002/jemt.10041. PubMed DOI

Bonneton F., Wegnez M. Developmental Variability of Metallothionein Mtn Gene Expression in the Species of the Drosophila Melanogaster Subgroup. Dev. Genet. 1995;16:253–263. doi: 10.1002/dvg.1020160305. PubMed DOI

Durliat M., Bonneton F., Boissonneau E., André M., Wegnez M. Expression of Metallothionein Genes during the Post-Embryonic Development of Drosophila Melanogaster. Biometals. 1995;8:339–351. doi: 10.1007/BF00141608. PubMed DOI

Shaik H.A., Mishra A., Sehnal F. Silk Recycling in Larvae of the Wax Moth, Galleria Mellonella (Lepidoptera: Pyralidae) Eur. J. Entomol. 2017;114:61–65. doi: 10.14411/eje.2017.009. DOI

Ortega-Arellano H.F., Jimenez-Del-Rio M., Velez-Pardo C. Melatonin Increases Life Span, Restores the Locomotor Activity, and Reduces Lipid Peroxidation (LPO) in Transgenic Knockdown Parkin Drosophila melanogaster Exposed to Paraquat or Paraquat/Iron. Neurotox. Res. 2021;39:1551–1563. doi: 10.1007/s12640-021-00397-z. PubMed DOI

Takeda A. Movement of Zinc and Its Functional Significance in the Brain. Brain Res. Brain Res. Rev. 2000;34:137–148. doi: 10.1016/S0165-0173(00)00044-8. PubMed DOI

Shaik H.A., Mishra A., Hussein H.M., Habuštová O.S., Sehnal F. Competitive Interactions between Entomopathogenic Nematodes and Parasitoid Venom. J. Appl. Entomol. 2020;144:481–490. doi: 10.1111/jen.12750. DOI

Sridhara S., Bhat J.V. Trace Element Nutrition of the silkwormBombyx Mori L. Proc. Indian Acad. Sci. Sect. B Biol. Sci. 1966;63:17–25. doi: 10.1007/BF03052022. DOI

Troxell B., Hassan H.M. Transcriptional Regulation by Ferric Uptake Regulator (Fur) in Pathogenic Bacteria. Front. Cell. Infect. Microbiol. 2013;3:59. doi: 10.3389/fcimb.2013.00059. PubMed DOI PMC

Gautam U.K., Hlávková D., Shaik H.A., Karaca I., Karaca G., Sezen K., Kodrík D. Adipokinetic Hormones Enhance the Efficacy of the Entomopathogenic Fungus in Model and Pest Insects. Pathogens. 2020;9:801. doi: 10.3390/pathogens9100801. PubMed DOI PMC

Shaik H.A., Mishra A., Sehadová H., Kodrík D. Responses of Sericotropin to Toxic and Pathogenic Challenges: Possible Role in Defense of the Wax Moth Galleria Mellonella. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;227:108633. doi: 10.1016/j.cbpc.2019.108633. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...